Scientific Production Faculty

Eigenvalues, K-theory and Minimal Flows



Itzá Ortiz, Benjamín Alfonso

2007

Itzá-Ortiz, B., Eigenvalues, K-theory and minimal flows, Canad. J. Math. 59(2007), 596-613. Preprinted


Abstract


Let (Y, T) be a minimal suspension flow built over a dynamical system (X, S) and with (strictly positive, continuous) ceiling function f : X ! R. We show that the eigenvalues of (Y, T) are contained in the range of a trace on the K0-group of (X, S). Moreover, a trace gives an order isomorphism of a subgroup of K0 (C(X) ?S Z) with the group of eigenvalues of (Y, S). Using this result, we relate the values of t for which the time-t map on minimal suspension flow is minimal, with the K-theory of the base of this suspension.



UAEH Research Product




Related articles

Propagation of Elastic Waves along Interfaces in Layered Beams

Matematicas en la distribucion espacial de poblaciones

D-Branes in Orientifolds and Orbifolds and Kasparov KK-Theory

A Polya and Szego Conjecture for the Fundamental Tone of Polygonal Membranes

CONTINUOUS AND DISCRETE FLOWS ON OPERATOR ALGEBRAS

Quasi-periodic breathers in Hamiltonian networks of long-range coupling

Eigenvalues, K-theory and Minimal Flows

Multichannel Detrended Fluctuation Analysis Reveals Synchronized Patterns of Spontaneous Spinal Acti...

PROPAGATION OF ELASTIC WAVES ALONG INTERFACES IN LAYERED BEAMS

Eigenfunction expansions and spectral projections for isotropic elasticity outside an obstacle