Scientific Production Faculty

Effect of support on the acidity of NiMo/Al2O3-MgO and NiMo/TiO2-Al2O3 catalysts and on the resulting competitive hydrodesulfurization/hydrodenitrogenation reactions



Guevara Lara, Alfredo

2019

Vazquez-Garrido, I., Lopez-Benitez, A., Berhault, G.,Guevara-Lara, A., Effect of support on the acidity of NiMo/Al2O3-MgO and NiMo/TiO2-Al2O3 catalysts and on the resulting competitive hydrodesulfurization/hydrodenitrogenation reactions, FUEL, 2019, 236, 55-64DOI: 10.1016/j.fuel.2018.08.053


Abstract


The influence of Al2O3, MgO-Al2O3, and TiO2-Al2O3 supports on the activity of NiMoS catalysts was evaluated for the competitive hydrodesulfurization/hydrodenitrogenation (HDS/HDN) reactions using dibenzothiophene and quinoline as model compounds. Nitrogen physisorption results show that the Al2O3-MgO and TiO2-Al2O3 supports present specific surface areas of 362?m2/g and 170?m2/g, respectively. Also, Al2O3-MgO and TiO2-Al2O3 supports have net surface pH values respectively of 9.0 and 4.9. The supports were impregnated with Ni/Mo aqueous precursor solutions and characterized at their oxide state using UV?vis diffuse reflectance and Raman spectroscopies after drying and calcination steps. Results show that the NiMo/MgO-Al2O3 catalyst presents mainly Ni2+Oh/MoO42? species while Ni2+Oh/Mo7O246?/Mo8O264? species are found on NiMo/TiO2-Al2O3 catalyst. NiMo catalysts supported on Al2O3-MgO and TiO2-Al2O3 were characterized at the sulfide state mainly by infrared spectroscopy using pyridine as a probe. In this respect, the NiMo catalyst supported on Al2O3 shows the highest concentration of Lewis acid sites of all catalysts series. Finally, the sulfide catalysts were evaluated in the HDS/HDN competitive reaction using dibenzothiophene and quinoline compounds. The highest DBT HDS activity for the NiMo/Al2O3 catalyst was associated with Lewis acid properties. However, the HDS inhibition caused by quinoline addition depends on the nature of the support. The NiMo/MgO-Al2O3 catalyst exhibits lower inhibition than NiMo/Al2O3 and NiMo/TiO2-Al2O3 catalysts. This behavior was related to the fact that the pyridine adsorption enthalpy depends on the support nature. The NiMo catalyst supported on MgO-Al2O3 requires more energy to adsorb pyridine than the catalysts supported on Al2O3 or TiO2-Al2O3.



Research Product




Related articles

Synthesis and crystal structures of cis-palladium(II) and cis-platinum(II) complexes containing di...

Evaluation of Aromatic Steroids as Thermal Maturity Indicators in Rock Extracts

Mercury Ions Removal from Aqueous Solution Using an Activated Composite Membrane

Study of the Humic Acid-Heavy Metal Interactions and Determination of their Stability Constants....

Cobalt Electrodeposition Process from Electrolytic Baths based on CoSO4 and (NH4)2SO4. Influence of ...

Effect of TiO2-Al2O3 sol-gel supports on the surface Ni and Mo species in oxidized and sulfided ...

Kinetics of Polypyrrole Films Doped with Sulphate Ions Electrodeposited Over Graphite - Epoxy Resin ...

Influence of the Crystallinity of the Substrate on Kinetic Parameters of Zinc Electrodeposition Proc...

Effect of support composition on the surface structures of nickel oxides and molybdenum and molybdenum oxides....

A theoretical quantum study on the distribution of electrophilic and nucleophilic active sites on Ag...