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Abstract: The present work shows the characterization of Phaseolus acutifolius variety 
latifolius, on which little research has been published, and provides detailed information on 
the corresponding lectin. This protein was purified from a semi-domesticated line of white 
tepary beans from Sonora, Mexico, by precipitation of the aqueous extract with ammonium 
sulfate, followed by affinity chromatography on an immobilized fetuin matrix. MALDI 
TOF analysis of Phaseolus acutifolius agglutinin (PAA) showed that this lectin is 
composed of monomers with molecular weights ranging between 28 and 31 kDa. At high 
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salt concentrations, PAA forms a dimer of 63 kDa, but at low salt concentrations, the 
subunits form a tetramer. Analysis of PAA on 2D-PAGE showed that there are mainly 
three types of subunits with isoelectric points of 4.2, 4.4, and 4.5. The partial sequence 
obtained by LC/MS/MS of tryptic fragments from the PAA subunits showed 90–100% 
identity with subunits from genus Phaseolus lectins in previous reports. The tepary bean 
lectin showed lower hemagglutination activity than Phaseolus vulgaris hemagglutinin 
(PHA-E) toward trypsinized human A and O type erythrocytes. The hemagglutination 
activity was inhibited by N-glycans from glycoproteins. Affinity chromatography with the 
immobilized PAA showed a high affinity to glycopeptides from thyroglobulin, which also 
has N-glycans with a high content of N-acetylglucosamine. PAA showed less mitogenic 
activity toward human lymphocytes than PHA-L and Con A. The cytotoxicity of PAA was 
determined by employing three clones of the 3T3 cell line, demonstrating variability 
among the clones as follows: T4 (DI50 51.5 µg/mL); J20 (DI50 275 µg/mL), and N5 (DI50 

72.5 µg/mL). 

Keywords: tepary bean; Phaseolus acutifolius; hemagglutinins; oligosaccharide specificity 
 

1. Introduction 

Some legumes are a particularly rich sources of lectins; the bulk of these molecules are located in 
protein bodies inside the cotyledon of the seeds, although they have also been found in leaves, stems, and 
roots. The lectin concentration can be up to 10% of the total nitrogen content of the mature seed [1-3]. 
Lectins from different species of legumes have similar molecular properties [4]. For example, all of 
them are oligomeric glycoproteins composed of two to four subunits, each with one carbohydrate 
binding site. Many legume lectins are metalloproteins, which require divalent cations (Ca++, Mg++, or 
Mn++) for their biological activity. The amino acid sequences of the lectins from different legume 
species exhibit homologies ranging from 30 to 90% [5]. Additionally, legume lectins share common 
structural features, such a characteristic jelly-roll motif in their tertiary structure and similar 
oligomerization patterns [5,6]. Despite these similarities, lectins differ markedly in their carbohydrate 
binding specificity [3,7,8]. The majority of the identified legume lectins can agglutinate a variety of 
plant and animal cells, such as erythrocytes, lymphocytes, and malignant cells [3,4,9]. Lectins can be 
used to identify and purify a wide variety of polysaccharides, glycoproteins, and glycolipids [10,11]. 

The lectins from the common bean Phaseolus vulgaris have been identified and characterized in 
cultivars from all over the world [12]. The most extensively characterized lectins from this species 
have been purified from the “red kidney” variety. The lectin fraction from this bean is composed of 
five kinds of isolectins, each consisting of non-covalently bound tetramers made up of different 
combinations of subunits, which are known as E (erythroagglutinating) and L (leukoagglutinating). 
Each of these subunits differs from the other slightly in their amino acid sequences and possesses 
differential affinities for erythrocytes and lymphocytes [13-18]. 

The tepary bean Phaseolus acutifolius A. Gray is an annual legume adapted to arid and semi-arid 
regions extending from North America to Costa Rica, including Puerto Rico and Mexico. Tepary 
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beans thrive under adverse agronomic conditions such as high salt concentrations and low water levels. 
Additionally, this species possesses high resistance to microbial pathogens and other predators [19-21]. 
Like other legume beans of the genus Phaseolus, tepary beans produce lectins and other anti-
nutritional factors [22-24]. The tepary bean is quite toxic to man and animals in its raw form due to the 
presence of lectins in its seeds. There are some reports concerning lectins purified from tepary beans 
cultivated in different places. Some of these works mention the high quantities of amino acids, such as 
aspartic acid, serine, threonine, leucine, phenylalanine, asparagine, glutamic acid, and glycine [25,26]. 
The molecular weight of purified lectins from tepary bean from Puerto Rico was reported to be 83 kDa, 
while for lectins from a Chiapas (Mexico) variety it was 117 kDa, and the isoelectric points were 4.5 
and 5.5, respectively. Another study reported a molecular weight in the range of 115–120 kDa for the 
tetrameric lectins purified from tepary beans from Queretaro, Mexico [27]. In this paper, we report on 
the purification, biochemical characteristics, and bioactive properties of white tepary bean lectins. 

2. Results and Discussion 

2.1. Isolation of Lectins 

The tepary bean lectin was purified by affinity chromatography after ammonium sulfate 
precipitation of the aqueous extract from tepary beans (Figure 1). Tepary bean crude extract had a 
protein concentration of 30.418 mg/mL, with a titer of 262,144 units and hemagglutination activity of 
8,618.05 units/mg per mL protein. 

Figure 1. Affinity chromatography in immobilized fetuin of the aqueous extract from 
tepary beans after precipitation with ammonium sulfate. The lectin fraction was eluted with 
an acid solution (50 mM glycine-HCl, pH 2.5). The purification yield is shown in Table 1. 
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The lectin fraction was recovered in one peak when the affinity column was eluted with glycine  
50 mM, pH 2.5; this fraction showed a titer of 26,214.4 units, with hemagglutination activity of 
226,376.51 units/mg per mL protein, with a 26-fold purification achieved at this point (Table 1). 

Table 1. Purification table of the lectin from tepary beans (Phaseolus acutifolius). 

Fraction 
Protein 
Concentration 
(mg/mL) 

Hemagglutination
Titer * 

Specific 
Activity 

Purification 
factor Lectin (%) 

Crude 
Extract 30.41 262144 8618.05 1  

Protein 
bound to 
fetuin 

1.16 262144 226376.51 26 0.586 

* Human A Erythrocytes trypsinized. 

Differences in hemagglutination activity was observed with human erythrocytes from blood type A, 
B, and O (data not shown), indicating that PAA presents blood group specificity, contrary to what was 
observed for tepary bean variety escumite, in which there was no blood group specificity [28]. 

The unbound fraction was applied to the fetuin affinity column until no binding was observed. 
Analysis of this unbound fraction showed that it retained high hemagglutination titers (data not 
shown). This result suggests that there are other fractions with hemagglutination activity that do not 
demonstrate affinity for fetuin. Therefore, this study was focused on the description of the fraction that 
showed affinity for fetuin. 

Figure 2. Electrophoretic analysis of the crude extract and pure lectin fractions from tepary 
beans on SDS-PAGE (Panel A) and Native PAGE (Panel B). Lane a in Panel A 
corresponds to the crude extract, lanes b and c corresponds to the pure lectin subunits with 
a molecular mass of 31 kDa. Panel B, line a shows that the lectin forms oligomers between 
of 132 and 153 kDa; lines b and c show the native Mw standards. 
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Figure 2A depicts the electrophoretic pattern of the fetuin-bound fraction on SDS-PAGE under 
reducing conditions. This pattern showed a single band indicating that the hemagglutinating protein 
was purified to homogeneity. 

2.2. Chemical Characterization of the Lectin 

Table 2 shows the amino acid composition results, which were determined by acid hydrolysis of the 
protein and subsequent O-phtalaldehyde derivatization. The amino acid content results showed 
differences with those reported by other authors for other varieties of tepary beans, because they found 
higher concentrations of Asx, Ser, and Leu [26,28,29], whereas in PAA the amino acids Gly, Leu, Met, 
and Ile, were found at higher concentration, and Lys, Glx, and Ala at a low concentration. 

Table 2. Amino acid composition of the tepary bean lectin. 

Amino Acid ng/mg % 
Lys 10.91 0.24 
Glx 21.25 0.47 
Ala 34.53 0.77 
Val 52.22 1.17 
His 109.50 2.45 
Tyr 190.64 4.26 
Arg 190.92 4.27 
Phe 257.31 5.75 
Asx 269.82 6.03 
Ser 347.55 7.77 
Thr 396.12 8.85 
Ile 401.79 8.89 

Met 460.67 10.29 
Leu 472.22 10.55 
Gly 1259.25 28.14 
Cys n.d.a n.d. 

a n.d. not detected. 

Analysis of the pure lectin by the phenol sulfuric assay showed that lectin from tepary beans 
contains 6.5% of carbohydrates. These sugars are most likely part of N-linked oligosaccharides, as is 
the case of most legume lectins [30,31]. The studies indicated that PAA is a glycoprotein that also 
contains metal ions in its structure, and various studies have shown that these structural components 
are of major importance for the biological activity of lectins [29,32-34]. 

Table 3 shows the concentration on metals, in parts per million (ppm), where it was observed that 
calcium was found at a higher concentrations than the other metals, while chromium was the one with 
the lowest concentration, and cadmium was not found in the lectin. Despite the presence of 
considerable amounts of calcium, no inhibition of hemagglutination activity was observed when 
EDTA was added to the hemagglutination reaction at concentrations of 100 mM (data not shown).  
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Table 3. Metal content of PAA determined by plasma spectrometry. 

Metal Concentration (ppm) 
Ca 10739.9 
Cu 2528.8 
Zn 847.3 
Mg 453.8 
Fe 324.6 
Mn 240.5 
Cr 19.8 

2.3. Oligomerization of the Lectin 

Separation of PAA by SDS-PAGE (Figure 2A) showed a single band with a molecular weight 
(Mw) of 31 kDa, whereas analysis by native gel electrophoresis showed a broad band in the range 
between 132 to 153 kDa (Figure 2B). Analysis of this lectin by MALDI-TOF revealed the presence of 
two species with Mw of 28 and 31 kDa, suggesting that the matrix used with fetuin has affinity for at 
least two isolectins, and that it forms an oligomer of at least four subunits. To confirm the results on 
the oligomerization of the lectin, one aliquot of the purified protein was injected into a TSK 3000-SW 
size exclusion chromatography column using PBS as elution buffer (data not shown). This analysis 
showed that PAA has an Mw of 62 kDa for the oligomeric protein, which suggests, in contrast to the 
native PAGE data, that it behaves like a dimer. To resolve these contradictory results, the role of ionic 
strength in the oligomerization of the lectin was tested. For this purpose, a set of size exclusion 
chromatography runs was performed in the lectin fraction using a Superose 12 size exclusion 
chromatography column (Figure 3). 

Figure 3. Analysis of oligomerization of the subunits of PAA by size exclusion 
chromatography on a superose 12 column (1.0 × 30 cm). Pure lectin was injected into the 
column and eluted at low ionic strength ( ) and 1 M NaCl ( ). Elution positions of the 
molecular weight standards (Thyroglobulin 660 kDa, aldolase 150 kDa, bovine serum 
albumin 67 kDa, and ovoalbumin 44 kDa) are indicated ( ). 
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In the first run, protein was eluted with a buffer containing 25 mM MES pH 6.0. This run yielded an 
Mw estimation of 123 kDa, corroborating the tetrameric behavior of the oligomeric lectin. However in a 
second run, when 1 M NaCl was added to the MES buffer, the estimated Mw was 63 kDa (close to a 
dimeric behavior). These data demonstrated that the concentration of salt affected the oligomerization of 
the lectin. It is known that legume lectins can form oligomers consisting of two or four subunits. Although 
many of the structural features of the oligomerization of legume lectins have been elucidated [30], there is 
still little information on the details of the mechanism for the oligomerization process. There are few 
studies on the influence of the ion concentration in the oligomerization process of any lectin. 
Hatakeyama et al. and Kuwahara et al. [35,36] reported that high concentrations of NaCl (1-M) and 
high pH values (9–10) induce oligomerization of the lectin CEL-III from the sea cucumber Echinaria 
cucumata when small carbohydrate ligands are present in the lectin solution. In the present study, low 
concentrations of NaCl favor the formation of a tetramer, as opposed to the formation of a dimer at 
higher salt concentrations. The previously noted results allowed us to conclude that the lectin isoforms 
found in these beans are composed of four subunits, which agrees with reports for other lectins from 
other varieties of tepary beans [26,29,37]. 

2.4. Characterization of the Subunits of the Tepary Bean Lectin 

Analysis of the lectin fraction by 2D-PAGE resulted in the separation of three protein species with 
the same molecular weight but different isoelectric points (4.2, 4.4, and 4.5) (Figure 4); each subunit is 
assumed to correspond to a different subunit.  

Figure 4. Analysis of the lectin from tepary beans by 2D-polyacrylamide gel 
electrophoresis. (A). In the gel shown, three distinct species (designated as a, b, and c) 
were distinguished; (B). Densitogram shows peaks corresponding to the three species, with 
calculated isoelectric points of 4.5 (a), 4.4 (b), and 4.2 (c). 
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Further analysis of the amino acid sequences of six tryptic peptides from these subunits (Table 4) 
showed that all of them share between 90 and 93% of identity with erythroagglutinating 
phytohemagglutinin, leukoagglutinating phytohemagglutinin from Phaseolus vulgaris [38], and 
phytohemagglutinin from Phaseolus coccineus [39], and 100% identity with phytohemagglutinin from 
Phaseolus acutifolius [40]. This latter sequence was isolated when a c-DNA from tepary beans was 
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screened with a probe derived from the sequence of the α-amylase inhibitor from Phaseolus vulgaris. 
Mirkov et al. [40] did not report on this sequence, nor did they purify a lectin fraction from tepary 
beans. Therefore, the present work confirms that the sequence reported in that study corresponds to an 
active lectin. Due to the identity found among the sequences of other lectins, as mentioned previously, 
and the subunits separated by 2D-PAGE for PAA, it is suggested that the differences in pI in the 
resolved species are due to post-translational modifications, such as glycosylation. 

Table 4. Results of the sequence obtained by LC/MS/MS on tryptic peptides of proteins 
excised from 2D-PAGE separation of the tepary bean subunits. The calculated masses were 
obtained from a theoretical tryptic digest of the sequence of the lectin precursor from 
Phaseolus acutifolius reported in the NCBI protein sequence data base (Accession No 
gi|1086123). 

Calculated 
Mass 

Observed 
Mass 

Start residue 
End 

residue. 
Sequence 

1095.6156 1095.6118 161 170 HIGIDVNSIK 
1317.7776 1317.7792 197 208 LLVASLVYPSQK 
1324.6995 1324.7072 209 220 TSFIVSDTVDLK 
1635.8125 1635.7968 140 153 AHTVAVEFDTLYNR 
1800.9086 1800.8922 56 72 LTNLNDNGEPTLSSLGR 
2219.2183 2219.2234 102 124 VPNNAGPADGLAFALVPVGSKPK 

2.5. Hemagglutination Activity 

Table 5 shows a comparison of specific activity on agglutination assays of the tepary bean 
hemagglutinin with commercial lectin from Canavalia ensiformis (concanavalin A). Our results 
showed that, in general, tepary bean hemagglutinin had higher activity than concanavalin A. When 
hemagglutination assays were carried out with non-trypsinized erythrocytes, it was observed that 
hemagglutination activity was lower than when erythrocytes were pretreated with trypsin  
s (data not shown). 

Table 5. Hemagglutination activity of the purified lectin from Phaseolus acutifolius 
compared with that of the lectin from Canavalia ensiformis (Concanavalin A) on 
trypsinized human erythrocytes of blood types A and O. 

Lectin 
Lectin 

Concentration 
(mg/mL) 

Trypsinized human erythrocytes 
(Hemaggluting titer) 

Type A Type O 
Tepary bean 3.5 292.6 36.6 
Phaseolus vulgaris (PHA-E) 3.5 20.34 × 107  33.55 × 106  
Concanavalin A 3.5 1.1 0.57 

The effect of various monosaccharides, oligosaccharides, and glycoconjugates on hemagglutination 
activity was tested in the present study. These assays were performed in 96-well microtiter plates in 
which the concentration of the potential inhibitor was varied and the lectin concentration was 
maintained constant. 
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The results obtained in these experiments (Table 6) showed that monosaccharide, oligosaccharides, 
and glycopeptides did not any inhibitory effects on the hemagglutination activity. However, on the 
other hand, intact glycoproteins showed an inhibitory effect in erythrocytes of both types A and O. 

Table 6. Effect of glycans and glycoconjugates on the hemagglutination activity of the 
lectin from tepary beans. 

 Inhibitory concentration a (mg/mL) 

Glycoproteins Human “O” 
Erythrocytes 

Human “A” 
Erythrocytes 

GnT-V 1.7 × 10E-3 27.3 × 10E-3 
Fetuin 78.1 × 10E-3 156.3 × 10E-3 
Fibrinogen 9.8 × 10E-3 39.1 × 10E-3 
Thyroglobulin 4.8 × 10E-3 4.8 × 10E-3 
Ovoalbumin 1.3 1.3 

Glycopeptides   
Tryptic glycopeptides from bovine fetuin n.i. n.i. 
Tryptic glycopeptides from pocine 
Thyroglobulin n.i. n.i. 

Tryptic glycopeptides from ovoalbumin n.i. n.i. 
Thermolytic glycopeptides from 
Fibrinogen 

n.i. n.i. 

Oligosaccharides   
Chitooligosaccharides n.i. n.i. 
Human milk oligosaccharides mixture n.i. n.i. 
Raffinose n.i. n.i. 
Lactose n.i. n.i. 

Monosaccharides   
Maltose n.i. n.i. 
Glucose n.i. n.i. 
Galactose n.i. n.i. 
Mannose n.i. n.i. 
Fucose n.i. n.i. 
Metilglucopyranose n.i. n.i. 
Glucosaminitol n.i. n.i. 
Galactosaminitol n.i. n.i. 

a lowest concentration giving complete inhibition. 

These results indicate that N-linked complexes (biantennary triantennary, or tetraantennary) are the 
best haptens for this lectin because these structures are those that present in the glycoprotein inhibitors 
that rendered the best inhibition. A summary of the structures that are present in the glycoproteins that 
were utilized in the hemagglutination inhibition assays is presented in Table 7. Bovine fetuin expresses 
mainly biantennary structures [40]. Triantennary oligosaccharides are the main components of bovine 
fetuin [41]. Porcine thyroglobulin possess a variety of biantennary and triantennary N-linked glycans [42], 
and the recombinant human β-1,6-N-acetylglucosaminyltransferase-V used in this study contains a 
variety of biantennary, triantennary, and tetraantennary glycans [43]. PAA, however, may have low 
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affinity for high mannose and hybrid structures because these are the structures present in ovoalbumin [44] 
and because this glycoprotein caused moderate inhibition of the hemagglutinating reaction. The fact 
that glycopeptides that were prepared from the glycoproteins mentioned previously did not cause 
inhibition of the hemagglutinating reaction is an indication that cooperativity (clustering of multivalent 
ligands) is important in the binding of PAA to its ligands [45]. Therefore, these results suggest  
that PAA, like other lectins [28,46-48] also belong to the group termed “complex” with specificity  
toward N-glycans. 

Table 7. Asparagine-linked oligosaccharide structures that are present in the glycoproteins 
and glycopeptides utilized in inhibition of the hemagglutination assays of PAA. 

Structure Name Source(s) References 

ASN

±

±

±

 
Biantennary complex 

Bovine Fibrinogen 
Bovine fetuin 

Porcine Thyroglobulin 
GnT-V 

[36,40,49,50]

ASN

±

±

±
±

 
Triantennary complex 

Bovine fetuin 
Porcine Thyroglobulin 

GnT-V 
[40,49,50] 

 

ASN

±

±

±
±

±  
 

tetrantennary complex GnT-V [49] 

 

ASN

±

±

±

±  
 

High mannose Ovoalbumin 
Porcine Thyroglobulin [40,41] 

 

ASN

±  

Hybrid Ovoalbumin 
Porcine Thyroglobulin [40,41] 

 Galactose;  N-Acetylglucosamine;  Mannose;  N-Acetylneuraminic (sialic) acid;  Fucose;  
± indicates that the monosaccharide residue may or not be present as part of the structure. 

The binding of glycopeptides from porcine thyroglobulin with a high variety of complex N-glycans 
showed that some of these glycopeptides were retarded by the immobilized tepary bean lectin. The 
chromatogram depicted in Figure 5 shows three distinct fractions: fraction 1 corresponds to the 
unbound (run-through) material, and fractions 2 and 3 are the glycopeptides that were retarded by the 
affinity column. The monosaccharide composition of the three fractions from lectin affinity 
chromatography presented in Table 8 shows that the retarded glycopeptides contained in fraction 3 
have a larger proportion of N-acetylglucosamine in their structures. 
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Figure 5. Analysis of the carbohydrate specificity of tepary bean hemagglutinin by lectin 
affinity chromatography. A glycopeptide mixture purified from thermolysin-treated 
thyroglobulin was applied to a column with a resin containing immobilized PAA. The 
glycopeptides were eluted in three fractions. Fraction 1 contains the unbound glycopeptides. 
Fractions 2 and 3 are the fractions that were retarded by the lectin column and that therefore 
have affinity for the lectin. Carbohydrate composition of these fractions is presented in Table 8. 
The proposed structure of the oligosaccharide with the highest affinity with the tepary bean 
lectin is presented in Figure 6.  
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Table 8. Carbohydrate compositions of the glycopeptide pools separated by affinity 
chromatography in an immobilized PAA column (Figure 6). 

Carbohydrate Residue Monosaccharide composition (%) 
Fraction 1 Fraction 2 Fraction 3 

Fucose 5.8 5.5 3.9 
Mannose 49.1 43.8 26.0 
Galactose 15.5 14.9 15.8 
N-acetylglucosamine 22.6 29.6 40.5 

Based on this monosaccharide composition, the structure shown in Figure 6 (a desialylated 
triantennary structure lacking a galactose residue in one of its branches) is proposed as the best ligand 
for PAA in the glycopeptides mixture from thyroglobulin. 

2.6. Mitogenic Activity 

The mitogenic activity of PAA was compared with that of the leukoagglutinating lectin from the 
common bean lectin (PHA-L) and concanavalin (Con A). These assays were carried out by measuring 
the amount of [3H] thymidine that was incorporated into cultured human lymphocytes at various doses. 

Results on the mitogenicity of the assayed lectins (PAA, PHA-L, and Con A) are presented in 
Figure 7. These results indicate that the lectins from PHA-L and Con A possess higher potential for 
stimulation of cell division, showing their maximum mitogenic effect at concentrations of 10 μg/mL; 
on the other hand, PAA showed its maximum mitogenic effect at 25 μg/mL. Studies with Phaseolus 
acutifolius variety escumite lectin [28] showed the same mitogenic capacity as the PAA, while, on the 
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other hand, Vargas-Albores et al. [26] reported that a lectin tepary had greater mitogenic activity than 
that of PAA. 

Figure 6. Structure of the oligosaccharide from porcine thyroglobulin (Figure 5, Fraction 3), 
which has the highest affinity to the lectin from tepary beans. This structure was proposed 
based on the monosaccharide composition of this fraction, shown in Table 8. 
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Figure 7. Comparison of the mitogenic effects of the lectin from tepary beans ( ), the 
leukoagglutinating lectin from Phaseolus vulgaris ( ), and Concanavalin A ( ). 
In these experiments, the incorporation of [3H]-thymidine was measured after incubation of 
cultured human lymphocytes with increasing amounts of each lectin. 

0
10000
20000
30000
40000
50000
60000

0 5 10 15 20 25 30 35 40 45 50

D
PM

Concentration of lectin (µg/mL)  

2.7. Cytotoxicity Activity on Mouse 3T3 Fibroblast Cell Clones 

Tepary bean lectin presented a dose-depending cytotoxic effect on the cell clone (evaluated using 
the MTT test). The cytotoxicities of cell clones were different as shown by the IC50 values obtained for 
each cell clones. For clone T4, we found an IC50 of 51.5 µg/mL, for N5, of 72.5 µg/mL, and for J20, of 
275 µg/mL. Figure 8 demonstrates that the T4 clone showed significant growth inhibition, while J20 
clone showed low inhibition even at a high lectin concentration. Cytotoxicity studies reported for the 
same lectin [51] have demonstrated that PAA have the ability to inhibit the growth of human cancer 
cells, either by causing cytotoxic or anti-proliferation effects on SW480 and C33-A cell lines, and, on 
the other hand, that PAA has the ability to inhibit the colony formation ability in both cell lines. On the 
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other hand, it has also been reported that tepary bean lectin can reduce the viability of small intestine 
epithelial cells of rats [52], as well as induce severe damage in mice [53]. 

Figure 8. Effect of the lectin from tepary beans on mouse 3T3 fibroblast cell clones. Cell 
clones were exposed to the indicated concentration of tepary bean lectins for 24 h, and after 
incubation, viability was determined employing the MTT assay. 
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3. Experimental 

3.1. Materials 

White tepary bean (Phaseolus acutifolius) seeds were purchased from a local market in Hermosillo 
(Sonora, Mexico). The beans were ground into a fine powder with a Thomas-Willey mill prior to the 
lectin isolation procedure. Reagents for protein extraction and purification were purchased from Sigma 
Chemical Co. (St Louis, MO, USA). Mini-Leak agarose matrix (medium density) was purchased from 
Kem-En-Tec A/S (Copenaghen, Denmark); Fractogel Azlactone affinity matrix was purchased from 
Merck (USA). Electrophoresis reagents were acquired from Bio-Rad (Hercules, CA, USA). 
Erythrocytes of human blood groups A and O were obtained from healthy volunteer donors. The 
erythrocytes were separated from plasma by centrifugation at 2,000 rpm for 10 min; the cells were then 
washed twice with two volumes of PBS (10 mM KH2 PO4/K2HPO4 50 mM NaCl, and 15 mM sodium 
azide, pH 7.2). For agglutination assays, 250 μL of erythrocytes were treated with trypsin (0.6 mg/mL) 
in 10 mL of PBS for 1 h at 37 ºC and then washed three times with PBS. The erythrocytes were diluted 
(2%) in PBS before use. Glycoproteins employed in hemagglutination inhibition assays (bovine fetuin, 
bovine fibrinogen, porcine thyroglobulin, conalbumin, and ovoalbumin) were from Sigma. 
Recombinant soluble β-1,6-N-acetylglucosaminyl transferase V (GnT-V) was purified from 
overproducer Chinese hamster ovary cells as described [43]. Glycopeptides utilized in 
hemagglutination and affinity chromatography studies were prepared from the glycoproteins 
mentioned previously by treating them with trypsin or thermolysin using the procedure reported by 
Altmann et al. [49]. Oligosaccharide mixture from chitin was prepared as described by Merkle and co-
workers [54]. Human milk oligosaccharide mixture was a kind gift from David F. Smith (University of 
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Georgia). RPMI 1640 culture media was purchased from Gibco BRL. Mouse 3T3 fibroblast cells 
clones (T4, N5, and J20) were a gift from Enrique Pérez-Cárdenas, M.Sc. (National Institute of Cancer 
Research, Mexico). All other reagents were of the highest quality available. 

3.2. Preparation of Mini-Leak Agarose Resin 

Bovine fetuin was immobilized in Mini-Leak agarose by adding 1 g of the the resin (previously 
washed with de-ionized water) to 50 mg of the protein in 1 mL of 0.1 M NaCl. Polyethyleneglycol was 
added immediately to a concentration of 20% and the coupling reaction mixture was incubated 
overnight at room temperature under constant agitation. After incubation, the mixture was settled, the 
supernatant was decanted, and the resin washed twice with 20 mL of 0.1 M NaCl to remove the 
uncoupled fetuin. To block the non-reacted active groups, the resin was incubated for 3 h with two 
volumes of 0.2 M ethanolamine at room temperature. Then the solution was decanted and the resin 
was packed into an empty chromatography column (1.5 cm × 15 cm) (Bio-Rad) and connected through 
a flow adapter to an FPLC chromatography system (Amersham Pharmacia Biotech, Uppsala, Sweden). 
The resin was washed with 20 mL of 0.1 M glycine, pH 2.5, then with 20 mL of 0.1 M of dibasic 
potassium phosphate, pH 11.0, and finally with 20 mL of 0.1 M NaCl, 15 mM NaN3. 

3.3. Purification of PAA 

Purification of PAA was carried out with modification of the method by Mejia et al. [37]. Presence 
of the lectin along the purification procedure was verified by positive hemagglutination in the activity 
assays described later. Ground tepary beans were extracted overnight with PBS (10 mL/g of bean 
meal) at 4 ºC in a glass beaker with constant stirring. The mixture was centrifuged at 12,000 g for 
60 min to yield the crude extract. The crude extract was dialyzed overnight against PBS at 4 ºC and 
centrifuged again to remove insoluble residues. The extract was then subjected to a “salting out” step 
with 70% NH4SO4 (w/v) and centrifuged at 12,000 g for 60 min. The precipitate was resuspended and 
dialyzed against three changes of PBS. The dialyzed fraction was subjected to affinity 
chromatography. Prior to sample injection, the affinity column was equilibrated with 20 volumes of 
PBS. Then the sample was applied and the unbound proteins were washed with 20 volumes of the 
initial buffer. Fractions that exhibited hemagglutination activity were eluted from the column with 
20 volumes of 50 mM glycine-HCl, pH 2.5. The elutes were dialyzed against distilled water with three 
changes, then lyophilized and stored at −20 °C until further characterization. Protein was determined 
according to Lowry et al. [55] using bovine serum albumin as standard. 

3.4. Size Exclusion Chromatography 

Molecular weight of the purified lectin from tepary beans was estimated by Size exclusion 
chromatography (SEC) on TSK 3000 SW size exclusion HPLC column (TosoHaas, Japan) that was 
previously equilibrated in PBS at a flow rate of 0.5 mL/min. An aliquot of the pure lectin (0.1 mg) was 
dissolved in PBS and injected into the column. The material was eluted from the column and 
monitored in an online Ultraviolet (UV) detector at wavelength of 280 nm. Molecular weight of the 
sample was estimated by graphic interpolation on a standard curve (data not shown) obtained by 
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graphing the retention time vs. the logarithm of the molecular weight of the following protein 
standards: thyroglobulin (660 kDa); ferritin (440 kDa); catalase (220 kDa); aldolase (150 kDa); bovine 
serum albumin (67 kDa), and ovoalbumin (44 kDa). In order to evaluate the role of ionic strength of 
the mobile phase in the retention time of PAA in SEC, a second system was employed in which this 
lectin was injected to a Superose 12 column (Amersham Biosciences) under two buffer conditions: the 
first with 25 mM MES pH 6.0 (low ionic strength); and the second with the same buffer, added 
together with 1 M NaCl (high ionic strength). Molecular weight in these runs was estimated as 
described previously. 

3.5. MALDI-TOF Mass Spectrometry 

Molecular weight of the purified tepary bean lectin was also measured by Matrix Assisted Laser 
Desorption/Ionization-Time of Flight Mass spectrometry (MALDI-TOF MS) (Hewlett Packard-
G2025A LD-TOF). The pure lectin was dissolved in 500 μL of water and a 5-μL aliquot of the protein 
was mixed with 5 μL of sinapinic acid. One to two microliters of sample were then applied to the 
surface of a gold probe, dried under vacuum, and applied to the spectrometer. 

3.6. Polyacrylamide Gel Electrophoresis (PAGE) 

The purified lectin was subjected to analysis by native PAGE using a Phast System Instrument 
(Amersham Biosciencies) in 8–25% PhastGel and run as described by the manufacturer (Separation 
Technique File Number 120). For dissociation of the subunits, SDS-PAGE was carried out according 
to Laemmli (1970) [56] under reducing conditions in a 12% gel. SDS-PAGE was performed in a 
vertical miniprotean II electrophoresis system (Bio-Rad). Separated proteins in the gels were 
visualized by staining with Coomassie blue R-250. Molecular mass standards in native PAGE were 
from Amersham Biosciences, and in SDS PAGE, were myosin, β-galatosidase, phosphorylase-B, 
bovine serum albumin, ovalbumin, carbonic anhydrase, and soybean trypsin inhibitor. 

For two dimensional-PAGE, Isoelectric focusing (IEF) electrophoresis was performed as the first 
dimension as described in [57,58]. The line on which the lectin was found was excised from the gel 
and placed at the top of a 12% SDS-PAGE gel, then sealed with 1% agarose, and then resolved for the 
second dimension. Proteins separated in the 2D-Gel were detected by silver nitrate staining [59] and 
scanned in a densitometer (BioRad GS700 Imaging densitometer). 

3.7. Amino Acid Composition Analysis 

Analysis of amino acid composition was performed hydrolyzing the purified lectin and 
transforming the released amino acids into their fluorescent OPA derivatives, which were then 
analyzed by reverse phase HPLC according to the method of Vázquez-Ortiz et al. [60]. 

3.8. Metal Composition Analysis 

The lectin was dissolved with NaCl (0.5%) and subsequently dialyzed against 0.5% NaCl for 12 h, 
and then against 50 mM EDTA for another 12 h. The dialyzed lectin was digested with nitric acid in a 
microwave oven (Perkin Elmer) and cations were detected by a plasma spectrometer (plasma 
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ICP-OES, optima 3000XL) [61]. A calibration curve was prepared using standards of each cation (Ca, 
Cu, Cr, Cd, Fe, Mg, Mn, Zn) (Perkin Elmer) and the concentration of each cation in the lectin sample 
was estimated by graphic interpolation in ppb. 

3.9. Carbohydrate Content 

Total carbohydrate content of the lectin was estimated by the phenol sulfuric acid method of 
Dubois [62] utilizing glucose as a standard. 

3.10. Analysis of Partial Sequences of Peptides Subunits by LC/MS/MS 

The subunits of the pure lectin from tepary beans were resolved by 2D-PAGE as described previously 
and stained with a fluorescent dye (Amersham Biosciences). The 2D gel was placed in a robotized-
system Ettan Spot Handling Workstation (Amersham Biosciences) and sections of the gel corresponding 
to the resolved subunits were excised. These gel sections were digested with trypsin and injected into a 
microbore C-18 column coupled via a nano-electrospray interface to a quadrupole-Time of Flight mass 
spectrometer operating in MS/MS mode [63,64]. Mass spectrometry data was analyzed by MASCOT 
(http://www.matrixscience.com). Deduced amino acid sequences were obtained using the ExPASy 
Proteomics Server available at (http://www.expasy.gov). Multiple alignments of known protein 
sequences were produced with the CLUSTAL W program (http://www.ebi.ac.uk/Tools/msa/clustalw2/). 

3. 11. Hemagglutination Assays 

Hemagglutination tests were carried out in microtiter 96-well (U shaped) plates. The lectin was 
diluted serially (2-fold), adjusting the sample volume in each well to 50 μL with PBS. Diluted samples 
were each mixed with 50 μL of the 2% suspension of trypsinized human erythrocytes types A and O. 
The reaction mixture was incubated for 1 h at room temperature and then observed for positive 
agglutination. The titer was defined as the reciprocal of the highest dilution showing detectable 
agglutination [65]. 

For hemagglutination inhibition assays, a PAA solution (50 μL, 0.08 μg/mL) was added to a battery 
of potential haptens (sugars, oligosaccharides, glycopeptides, and glycoproteins listed in Table 1, 50 μL), 
each diluted serially (2-fold) with PBS in microtiter plates, incubated for 1 h, and then added with 50 μL 
of a trypsinized 2% suspension of human erythrocytes. After incubation of the mixture at room 
temperature for 1 h, the reaction was observed for the end-point of minimum agglutination as 
described previously. Inhibitory activity was expressed as the lowest concentration of sample solution 
at which inhibition of hemagglutination was observed. 

3.12. Preparation of Fractogel-Azlactone-Lectin Matrix 

Purified tepary bean lectin was coupled wit Fractogel-Azlactone matrix by adding the resin (290 mg, 
1 mL) to the lectin (10 mg) previously suspended in a buffer (2 mL) that contained 0.05 M of KH2PO4 
and 0.6 M sodium citrate, pH 7.5. The reaction mixture was incubated for 4 h at room temperature 
under constant agitation. The coupling was stopped by adding 500 μL of 3 M ethanolamine for 3 h. 
Then the solution was decanted and the resin was washed with TBS (20 mL, Tris 50 mM, pH 8.0, 
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NaCl 150 mM, CaCl2 10 mM, and 0.2 mM MgCl2). Finally, the matrix was packed in an empty 
chromatography column (1 × 10 cm) and equilibrated with TBS. 

3.13. Characterization of Lectin Affinity 

PAA immobilized in an azlactone-polyacrylamide affinity resin (2 mL, see previously) was packed 
into a 1 × 10 cm chromatography column. This column was connected with a flow adaptor to an Akta 
Purifier 100 chromatography system (Amersham Biosciences) and equilibrated with 10 volumes of 
TBS. We suspended trypsinized glycopeptides (5.4 mg) from thyroglobulin in the buffer (1.5 mL) and 
applied this to the affinity column at a flow rate of 1 mL/min. Then the column was washed with  
10 volumes of TBS to recover the unbound and retarded material. Then, five volumes of an acidic 
buffer (50 mM glycine, 150 mM NaCl, pH 2.5) were applied to wash out any bound material from the 
affinity column. The glycopeptides that were washed and eluted from the affinity column were 
detected with an online UV detector at 214 nm and collected as 1-mL fractions in glass tubes. 
Fractions were pooled as unbound, retarded, or bound glycopeptides. These pooled fractions were 
desalted through a Sephadex G-15 gel filtration column using a volatile buffer (100 mM NH4HCO3) 
and dried under reduced pressure. The desalted glycopeptides were then analyzed for sugar 
composition by TMS derivatization followed by gas chromatography [66]. 

3.14. Mitogenic Activity on Human Lymphocytes 

Lymphocytes were obtained from human peripheral blood by centrifugation over a Ficoll gradient 
(Sigma Chemical Co.). The isolated lymphocytes were diluted 2-fold with PBS, then washed in the 
same buffer, and finally the cells were suspended in RPMI 1640 culture media containing 10% fetal 
bovine serum and 1% antibiotic (streptomycin and sodium penicillin G). 

The cells were cultured in flat-bottomed microtiter plates at a concentration of 2 × 105 cells/well. 
Aliquots of pure PAA were added at different concentrations (0, 0.5, 1.0, 5.0, 10.0, 25.0, and 50.0 μg/mL) 
in medium with a total volume of 200 μL. Incubation was carried out at 37 ºC in an atmosphere of air 
containing 4% CO2 (v/v). After the cells were cultured for 42 h, they were added to 3 μci/mL of 
[3H]thymidine (Amersham Biosciences); then, the culture was incubated for 6 additional hours [32]. 

After incubation, the cells of each well were poured into a microcentrifuge tube and centrifuged for 
10 min at 10,000 rpm to stop uptake of radioactivity, the medium was removed, and the cells were 
washed twice with PBS; then, 0.1% SDS (500 μL) containing 10 mM EDTA was added. After 20 min at 
room temperature, the lysate was added to 10% cold trichloroacetic acid (TCA, 500 μL). The 
precipitate was collected on a nitrocellulose filter (Bio Rad), washed with 3 mL of 5% TCA, and dried, 
and the filter was dipped into a 4-mL cocktail in a scintillation vial and radioactivity was counted in a 
liquid scintillation counter (Beckman LS 6500) [67]. All determinations were done in quintuplicate. 

3.15. Cytotoxicity Activity on Mouse 3T3 Fibroblast Cell Clones 

In this assay, we employed three clones of mouse 3T3 fibroblasts previously prepared in the 
laboratory of Dr Alejandro García-Carrancá; the clones comprised J20, T4, and N5. The cells were 
cultured in DMEM culture media (Gibco BRL) containing 10% fetal bovine serum and 1% antibiotic 



Molecules 2011, 16              
 

2578

(streptomycin and sodic penicillin G) in flat-bottomed microtiter plates at a concentration of 
1 × 104 cells/well. Aliquots of pure PAA were added at different concentrations (0, 1.0, 10, 100, 200, 
and 300, μg/mL) in medium with a total volume of 200 μL. Incubation was carried out at 37 ºC in an 
atmosphere of air containing 4% CO2 (v/v) for 24 h. After incubation, the cells were washed and added 
to culture medium and viability was determined employing the MTT technique [68]. 

4. Conclusions 

In this study, it was possible to purify the lectin from Phaseolus acutifolius by affinity 
chromatography using fetuin. However, inhibition tests showed that the lectin can be purified with 
other glycoproteins, such as thyroglobulin, which shows residues of fucose, mannose, galactose, and 
N-acetyl glucosamine, as analyzed in this study. Thus, PAA could be classified as a complex lectin. 
PAA is a tetrameric glycoprotein that can behave as a dimer due to the ionic strength of the medium, 
composed of at least three isoforms, whose subunit molecular weights differed slightly, possibly due to 
glycosylation differences in their structure. Partial amino acid sequences from PAA had high identity 
with phytohemagglutinin of Phaseolus vulgaris and Phaseolus coccineus, showing the need to 
conserve these molecules. Because the PAA showed toxic effects on human lymphocytes and mouse 
fibroblasts, the results open the possibility of using this lectin in toxicity studies on normal and 
transformed cells from human and animal sources. A deeper characterization of isolectins in PAA is 
required in order to define fine carbohydrate specificities and structural and biochemical differences. 
Therefore, understanding the structure and function of the lectin would be useful in studies with 
bacteria, fungi, viruses, and tumor cells, which cause damage to plants and to humans. 
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