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NADPH oxidase participates in the oxidative
damage caused by fluoride in rat
spermatozoa. Protective role of a-tocopherol
Jeannett A. Izquierdo-Vega,a Manuel Sánchez-Gutiérrez,b

Luz María Del Razoa*

ABSTRACT: Fluorosis, caused by drinking water contaminated with inorganic fluoride, is a public health problem in many areas
around the world. The aim of this study was to evaluate oxidative stress in spermatozoa caused by fluoride and NADPH oxidase
in relationship to fluoride. Four experimental groups of male Wistar rats were administered with deionized water, NaF, at a dose
equivalent to 5 mg fluoride kg-1 per 24 h, NaF plus 20 mg kg-1 per 24 h a-tocopherol, or a-tocopherol alone for 60 days. We
evaluated several spermatozoa parameters in the four groups: standard quality analysis, superoxide dismutase (SOD) activity,
the generation of reactive oxygen species (ROS), NADPH oxidase activity, TBARS formation, ultrastructural analyses of
spermatozoa using transmission electron microscopy and in vitro fertilization (IVF) capacity. After 60 days of treatment, urinary
excretion of fluoride was not modified by a-tocopherol. Spermatozoa from fluoride-treated rats exhibited a significant increase
in the generation of ROS, accompanied by a significant increase in NADPH oxidase activity. The increase in ROS generation was
significantly diminished by diphenylene iodonium, an inhibitor of NADPH oxidase activity. In contrast, a decrease in the
generation of ROS, an increase in SOD activity and the prevention of TBARS formation process were observed in spermatozoa
of rats exposed to fluoride plus a-tocopherol. Finally, a-tocopherol treatment prevented the IVF incapacity observed in the
spermatozoa from fluoride-treated rats. These results suggest that NADPH oxidase participates in the oxidative stress damage
caused by subchronic exposure to fluoride. Copyright © 2010 John Wiley & Sons, Ltd.

Keywords: a-tocopherol; fluoride; in vitro fertilization; NADPH oxidase; oxidative stress

INTRODUCTION

Fluoride is an environmental pollutant. Humans are exposed to
fluoride via dental products, food and pesticides. Drinking water
contaminated with fluoride from subsoil constitutes the greatest
source of fluoride exposure for most people (National Research
Council, 2006). The natural concentration of fluoride in ground-
water depends on the geology, chemical conditions and physical
characteristics of the water-bearing, the soil porosity and acidity,
the bedrock, temperature and the depth of extraction wells
(Pauwels and Ahmed, 2007). High fluoride concentrations in
groundwater have been reported in India, China, Spain and
Mexico, where levels are higher than 1.5 mg l-1 (Armienta and
Segovia, 2008; Del Razo et al., 1993; Gupta et al., 1993; Hardisson
et al., 2001; Wang et al., 2007).

The most significant risks of increased fluoride exposure effects
are on bone cells that can lead to the development of skeletal
fluorosis. However, fluoride also affects cells from soft tissues, i.e.
renal, endothelial, neurological and gonadal. Fluoride induces
reproductive defects, affecting the fertility capacity. Freni (1994)
showed an inverse correlation between human fertility and fluo-
ride levels in drinking water. Epidemiological data have also indi-
cated that fluoride may adversely affect the reproductive systems
of men living in fluorosis endemic areas (Ortiz-Perez et al., 2003).

A variety of mechanisms have been proposed to explain
fluoride-induced toxicity, including oxidative stress. Oxidative
stress has been observed in soft tissues such as the liver, kidney,

brain and testes in animals exposed to fluoride (Ghosh et al., 2002;
Guo et al., 2003; Shanthakumari et al., 2004) and people living in
areas of endemic fluorosis (Shivashankara et al., 2000). Exposure
to fluoride decreases glutathione levels and can inhibit the activ-
ity of antioxidant enzymes such as superoxide dismutase (SOD),
glutathione peroxidase, and catalase (Chlubek and Poland 2003).
Many studies have shown that fluoride induces the production of
reactive oxygen species (ROS) (Chouhan and Flora 2008;
Izquierdo-Vega et al., 2008; Wang et al., 1997).

The main sources of ROS in spermatozoa are the mitochondria
and other spermatozoa-specific enzymes. It has been proposed
that NADPH oxidases (NOX) could have an important contribu-
tion to ROS generation (Aitken et al., 1992, 1997). In humans, the
NOX family consists of seven members, NOX1, NOX2, NOX3,
NOX4, NOX5 and dual oxidases (DUOX1 and DUOX2). The cata-
lytic core of NOX is a membrane-integrated glycoprotein with an
apparent molecular mass of about 91 kDa (gp91phox). It contains
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two hemes in the N-terminal transmembrane region and NADPH-
binding and FAD-binding domains in the C-terminal cytoplasmic
region, forming a complete apparatus that transports electrons
from NADPH via FAD and two hemes to molecular oxygen.
Despite their similar structure and enzymatic function, NOX
family enzymes differ in their mechanism of activation (Bedard
and Krause 2007).

ROS are implicated as important pathologic mediators in many
disorders. Various studies have investigated whether oxidative
stress is involved in the adverse reproductive effects caused by
fluorosis (Ghosh et al., 2002; Izquierdo-Vega et al., 2008). a-
Tocopherol protects testes and male accessory sex organs from
oxidative stress caused by fluoride exposure (Sarkar et al., 2006),
and it is a well-known antioxidant that protects cell membranes
against peroxidative damage (Bourges-Rodríguez, 2008). It also
has functions that cannot be only attributed to its antioxidant
properties, such as the negative modulation of PKC-related sig-
naling and the impairment of NADPH oxidase assembly (Cachia
et al., 1998; Varga et al., 2008). Here, we investigated whether
NADPH oxidase participates in the oxidative stress caused by
fluoride and the protective role of a-tocopherol.

MATERIALS AND METHODS

Chemicals

Acrylamide, bovine serum albumin fraction V (BSA), butylated
hydroxytoluene (BHT), deferroxamine (DFA), dimethyl sulfoxide
(DMSO), diphenyleneiodonium chloride (DPI), sodium fluoride
(NaF), formaldehyde, glycerol, hyaluronidase, hoechst 33342,
human chorionic gonadotropin (hCG), b-reduced nicotinamide
adenine dinucleotide phosphate (NADPH), Nonidet P-40, phenyl-
methanesulfonyl fluoride (PMSF), a-tocopherol, sodium dodecyl
sulfate (SDS), thiobarbituric acid (TBA), triton X-100, glutaralde-
hyde, tween-20, osmium tetroxide, trypan blue and sodium
orthovanadate were purchased from Sigma-Aldrich (St Louis, MO,
USA). Spurr’s resine was from Electron Microscope Sciences (Fort
Washington, PA, USA). Pregnant mare’s serum gonadotropin
(PMSG; Folligon) was purchased from Intervet International B.V.
(Boxmeer, The Netherlands). Complete mini protease inhibitor
cocktail tablets were purchased from Roche Diagnostics (Man-
nheim, Germany), and the RANSOD Assay kit from Randox Labo-
ratories Ltd (Crumlin, UK). Dihydroethidium (DHE), SYTOX green
was purchased from Molecular Probes, Invitrogen (Mount Waver-
ley, Australia), and a protein assay kit was purchased from Bio-Rad
(Hercules, CA, USA). All other chemicals used were of the highest
purity commercially available.

Animals and Experimental Design

Male Wistar rats (75–99 g) and immature (5 weeks old) female
Wistar rats were obtained from Harlan (Mexico). Animals were
maintained according to the Institutional (CINVESTAV-IPN),
Animal Care and Use Committee, in compliance with Guidelines
for Use and Care of Laboratory Animals. Animals were maintained
in groups of six per cage, on a 12–12 h light/dark cycle at constant
temperature (22 � 2 °C) and humidity (50%), with food (LabDiet®
5013, PMI Nutrition International, St Louis, MO, USA) and water
freely available in their home cages.

The animals were distributed randomly into four experimental
groups. Six male rats in each group were administered deionized

water for the control group, NaF at a dose equivalent to 5 mg
fluoride kg-1 per 24 h, NaF plus 20 mg kg-1 per 24 h a-tocopherol,
or a-tocopherol. In all treated groups, the doses were given by
oral gavage once a day for 60 days. In order to avoid a possible
interference in the kinetic processes of both xenobiotics given by
gavage (fluoride and a-tocopherol), the a-tocopherol treatment
was given to rats 5 h after fluoride administration. The duration of
the treatment was 60 days, since one spermatogenic cycle in the
rat is 50 � 2 days, and thus we ensured that the fluoride exposure
occurred during at least one complete period of spermatogen-
esis in the rat.

Urinary Fluoride Concentration

Every 15 days urine was collected from each individual in each
treatment group in order to quantify the fluoride concentration
by a potentiometric method using an ion selective electrode
(Orion 9609; Del Razo et al., 1993).

Spermatozoa Isolation and Capacitation

After 60 days of treatment, rats were euthanized by cervical dis-
location, the testes-epididymis–vas deferens complexes were
dissected, and spermatozoa were isolated by flushing the vas
deferens and cauda epididymis lumens with 1 ml of phosphate
buffered saline (PBS, pH 7.4). Spermatozoa counts were deter-
mined using a Neubauer chamber. To induce capacitation,
10 ¥ 106 spermatozoa ml-1 in enriched Krebs–Ringer bicar-
bonate (EKRB) supplemented with 3 mg ml-1 BSA were incubated
for 4 h at 37 °C in a high-humidity incubator under 5% CO2

(Bendahmane et al., 2002).

Spermatozoa Quality

Sperm parameters, including concentration, viability and pro-
gressive motility, were evaluated according to WHO (2001) guide-
lines. Spermatozoa motility (the percentage of cells that were
motile), was assessed by microscopic examination of 10 random
fields. Spermatozoa viability was determined by trypan blue
exclusion assay. Spermatozoa concentrations were determined
using a hemocytometer. Two aliquots (100–200 cells each), were
separately counted for each animal. Although epididymal sper-
matozoa are not at this point subjected to peroxidative damage
caused by leukocytes, the absence of these cells was evaluated
by optical microscopy in all samples.

SOD Activity in Spermatozoa

SOD was extracted from 10 ¥ 106 spermatozoa, treated 1 : 1 with
0.1% Triton X-100–PBS, and incubated at 4 °C for 15 min. Samples
were then centrifuged at 600 g for 8 min at 4 °C, and supernatants
were removed for measurement of SOD using the RANSOD Assay
kit. This method uses xanthine and xanthine oxidase to generate
superoxide radicals, which react with 2-(4-iodophenyl)-3-(4-
nitrophenol)-5-phenyltetrazolium chloride to form a red forma-
zan dye. SOD activity was measured by the degree of inhibition of
chromogen formation at 505 nm using a spectrophotometer
(VitaLab ECLIPSE Merck, Darmstadt, Germany). SOD activity was
calculated using a standard graph, according to the manufactur-
er’s instructions. The unit of activity of the assay was defined as2
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the amount of SOD that inhibited the rate of formazan dye for-
mation by 50%. The results are presented as units per milligram of
protein.

Measurement of ROS Generation

Levels of ROS were measured by flow cytometry using DHE and
SYTOX Green, which is a vitality stain, as previously described (De
Iuliis et al., 2006). DHE is a poorly fluorescent product of the two-
electron reduction of ethidium that, upon oxidation, produces
DNA-sensitive fluorochromes that generate a red nuclear fluores-
cence when excited at a wavelength of 510 nm. For the assay, 2 ¥
106 spermatozoa in EKRB medium with BSA were incubated with
3 mM DHE and 0.25 mM SYTOX Green in the dark at 37 °C for 1 h.

To evaluate the participation of NADPH oxidase in the genera-
tion of ROS in spermatozoa, 2 ¥ 106 spermatozoa in EKRB-BSA
medium were incubated with 1 mM DPI (dissolved in 10% DMSO),
10 min before staining. Fluorescence was then measured for 10
000 cells using a flow cytometer (FACSCalibur system, Becton
Dickinson; Franklin Lakes, NJ, USA).

NADPH Oxidase Activity Assay

NADPH oxidase activity in spermatozoa was measured by induc-
ing ROS generation with the addition of NADPH as previously
described (Aitken et al., 1997). For the assay, 2 ¥ 106 spermatozoa
in EKRB medium with BSA were incubated with 150 mM of NADPH
and stained with 3 mM DHE and 0.25 mM SYTOX Green in the dark
at 37 °C for 1 h. Fluorescence was then measured for 10 000 cells
using a flow cytometer (FACSCalibur system, Becton Dickinson;
Franklin Lakes, NJ, USA).

Protein Extraction and Separation

Proteins were extracted from spermatozoa of control and
fluoride-treated rats. Spermatozoa samples were pooled by treat-
ment group. The samples were washed twice with PBS and lysed
with 1% Nonidet P-40 in PBS, pH 7.4, containing 1 mM PMSF, 1 mM

orthovanadate and protease inhibitors cocktail. After 30 min of
incubation at 4 °C, spermatozoa were centrifuged at 10 000 ¥ g
for 10 min at 4 °C, and the supernatant was collected. Protein
concentration was determined with the Bio-Rad (Hercules, CA,
USA) protein assay reagent, using bovine serum albumin as a
standard. Equal quantities of each sample were separated by
electrophoresis on 12.5% SDS-polyacrylamide gels with pre-
stained protein.

Western Blotting

After electrophoresis, proteins were transferred to nitrocellulose
membranes (Bio-Rad Laboratories, Richmond, CA, USA), which
were then blocked with 5% nonfat dry milk in 0.05% Tween-20
and reacted with antibodies against p47phox (1 : 125), or actin
(1 : 12000; Santa Cruz Biotechnologies, Santa Cruz, CA, USA).
Inmunodetection was followed by incubation with horseradish
peroxidase coupled to secondary antibodies against p47phox

(1 : 125), and IgG-HRP (1 : 12 000; Santa Cruz Biotechnologies,
Santa Cruz, CA, USA). Antigen–antibody complexes were visual-
ized using chemiluminescent ECL reagents (Amersham Pharma-
cia Biotech UK Limited, UK). All experiments were repeated three

times. The intensity of the bands was subjected to quantitative
analysis, digital images were analyzed with Image J software
(NIEH, RTP, NC), and the results were averaged.

TBARS Concentration in Spermatozoa

Thiobarbituric acid reactive substances (TBARS) were determined
according to Buege and Aust (1978). Briefly, 1 ml of 0.5% TBA, 5 ml
of 3.75% BHT in methanol, and 5 ml of 1.5 mM DFA were added to
1 ml of spermatozoa suspension (2 ¥ 106 cells). Samples were
then heated in a boiling water bath for 20 min, cooled, and the
absorbance was measured at 532 nm using a spectrophotometer
(UV–vis Lambda-2S Perkin-Elmer). Measurements are expressed
as nmol TBARS/2 ¥ 106 spermatozoa.

Transmission Electron Microscopy

Spermatozoa samples from control and fluoride-treated rats
were fixed with 3% (v/v) glutaraldehyde in PBS buffer for 1 h at
room temperature. Samples were then postfixed in 1% (v/v)
osmium tetroxide in PBS for 1 h. The cells were rinsed in PBS,
dehydrated through a grade ethanol series, and embedded in
Spurr’s resin. Resin blocks were ultra-thin sectioned and double-
stained with uranyl acetate and lead nitrate. The samples were
examined using a JEM-1200 EXII transmission electron micro-
scope at 60 keV (Jeol Ltd; Tokyo, Japan). Ten ultra-thin sections
from each sample were separately analyzed.

In Vitro Fertilization Assay

Egg recovery

Five-week-old female Wistar rats were superovulated by intrap-
eritoneal injection of 20 IU PMSG, followed by 20 IU hCG 48 h
later. Animals were euthanized 14–16 h after hCG injection by
cervical dislocation. Uterine ovary–salpinge–horn complexes
were dissected, ampullae punctured and cumulus–egg com-
plexes were extruded and placed in 0.1% (w/v) hyaluronidase/
EKRB medium to remove cumulus cells. Cumulus-free eggs were
pooled and washed with EKRB medium and then incubated at
37 °C under 5% CO2 until use. Approximately 40 eggs were
obtained from each female. Only eggs with polar bodies and with
intact zonae pelucidae were used for fertilization assays.

Insemination of zone-intact eggs

To assess spermatozoa fertility, 40 eggs were suspended in 200 ml
of EKRB medium in a glass slide with two polished spherical
depressions of approximately 0.5–0.8 mm depth (VWR Interna-
tional), inseminated with 10 ml of capacitated spermatozoa (1 ¥
105 cells), from control or treated rats (fluoride, a-tocopherol and
fluoride plus a-tocopherol), and incubated for 4 h at 37 °C in
a high-humidity incubator under 5% CO2. After gamete
co-incubation, eggs were fixed in 3% formaldehyde in PBS and
stained with 20 mM Hoechst 33342 for 20 min. Samples were then
washed three times in PBS, mounted on a glass slide with 50%
glycerol-PBS and examined by fluorescence microscopy to assess
fertilization. Eggs were considered fertilized when decondensed
spermatozoa heads were detected within the egg cytoplasm. 3

Oxidative damage caused by fluoride in rat spermatozoa
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Statistical Analysis

Results comparing two samples are expressed as means � stan-
dard deviation (SD) of at least three individual experiments. Sta-
tistical analysis was carried using ANOVA followed by Tukey’s test,
and a P-value < 0.05 was considered significant. All analyses were
performed using the statistical software Stata 8.0 (Stata Corp.,
College Station, TX, USA).

RESULTS

Water intake and food intake in the fluoride-exposed group were
similar to the control group during the exposure time. Conse-
quently, no significant differences were observed in the body
weight of exposed and control rats (data not shown).

a-Tocopherol Does Not Modify Urinary Fluoride
Concentration

Urinary fluoride concentrations were measured in all groups
during treatment. The level of fluoride increased significantly in

the fluoride group compared with the control group. There
were no statistical differences in the levels of fluoride between
the fluoride plus a-tocopherol group and the fluoride group
(Fig. 1).

a-Tocopherol Protects Spermatozoa Motility Affected by
Fluoride Exposure

Next, we analyzed overall quality of spermatozoa according to
several parameters, summarized in Table 1. The spermatozoa
motility was affected only in the fluoride-exposed rats.
a-Tocopherol prevented the reduction in spermatozoa motility
caused by the exposure to fluoride.

a-Tocopherol Protects Against Oxidative Stress and
Oxidative Damage in Spermatozoa Caused by Subchronic
Fluoride Exposure

To evaluate oxidative stress, the functional activity of SOD and
generation of ROS were assessed. As shown in Fig. 2(a), fluoride
exposure led to a significant decrease in total SOD activity,

Figure 1.

Table 1. Assessment of spermatozoa parameters

Sperm parameters Control Fluoride a-Tocopherol Fluoride + a-tocopherol

Motility (%) 92 � 5.6 81 � 6.8* 90 � 2.1 88 � 5.7
Sperm concentration (106 ml-1) 41.1 � 14.2 30.6 � 13.5 40.9 � 5.4 39.4 � 3.2
Viability (%) 97 � 0.95 95 � 1.5 90 � 5.4 90 � 4.8

Values are means � SD. *P < 0.05 vs control group.

4
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which was 3.28-fold lower than in the control group (P < 0.001).
The co-administration of fluoride plus a-tocopherol prevented
the diminution of SOD activity caused by fluoride exposure
(P < 0.001). In spermatozoa from rats exposed to fluoride, DHE
fluorescence was 1.4-fold greater than in the control group
(P < 0.001). In spermatozoa co-treated with fluoride plus
a-tocopherol, the DHE fluorescence was found at the same level
as in the control and a-tocopherol groups, indicating that
a-tocopherol prevents the increase of ROS levels in spermato-
zoa from fluoride-treated rats (Fig. 2b). We also examined TBARS
formation, a marker of oxidative damage (Fig. 2c). TBARS levels
were increased 1.5-fold in spermatozoa from fluoride-treated
rats compared with the control group (P < 0.001). After
co-treatment with fluoride plus a-tocopherol, the TBARS forma-
tion was 1.4-fold lower with respect to the fluoride-exposed
group. There was no significant difference between the control
group and fluoride plus a-tocopherol group. These results
shown that a-tocopherol protects from the oxidative damage
caused by fluoride exposure.

NADPH Oxidase Participates in the Oxidative Stress Caused
by Fluoride in Spermatozoa

To evaluate the importance of spermatozoa NADPH oxidase in
creating the oxidative stress caused by fluoride exposure, the
generation of ROS in spermatozoa with and without the presence
of DPI and the functional activity of NADPH oxidase were evalu-
ated. Spermatozoa from fluoride-treated rats exhibited a signifi-
cant increase in the generation of ROS, which were significantly
diminished 1.8-fold by DPI (P < 0.001). The generation of ROS in
spermatozoa of the control group was diminished only 1.2-fold
by DPI (P < 0.001) (Fig. 3a). In contrast, the generation of ROS was
prevented in spermatozoa from a-tocopherol-treated rats and
was not inhibited by DPI (Fig. 3b). In order to corroborate the
participation of NADPH oxidase in spermatozoa, its activity was
evaluated. The activity of NADPH oxidase was increased 1.2-fold
in spermatozoa from fluoride-treated rats compared with the
control group (P < 0.001), while the activity of NADPH oxidase in
both groups treated with a-tocopherol was not different from
the activity in the control group (Fig. 4). These results indicate
that NADPH oxidase participates in the generation of ROS
observed in the fluoride exposure and that NADPH oxidase activ-
ity is negatively modulated by a-tocopherol.

In addition, we determined p47phox, a subunit NADPH oxidase
by western blotting. The amount of p47phox protein in spermato-
zoa was not modified by fluoride exposure as compared with the
control group (Fig. 5). These results suggest that ROS generation
by NADPH oxidase in the fluoride-exposed rats is due to a posi-
tive modulation of this enzyme activity.

a-Tocopherol Protects Against the Oxidative Damage
Caused by Subchronic Exposure to Fluoride in Spermatozoa
as Shown by Transmission Electron Microscopy

Ultrastructural evaluations of spermatozoa from all groups were
performed via transmission electron microscopy (TEM), and rep-
resentative images are shown in Fig. 6. The control and
a-tocopherol-exposed spermatozoa exhibited an intact plasma
membrane around the cell (Fig. 6a and d). This normal appear-
ance was visibly altered in the plasma membrane along the
sperm head spermatozoa from fluoride-treated rats (Fig. 6b). The
co-exposure to fluoride plus a-tocopherol showed a structural
protection against fluoride-induced plasma membrane damage
(Fig. 6c).

a-Tocopherol Prevented the in Vitro Fertilization Incapacity
Observed in the Spermatozoa from Fluoride-treated Rats

Next, we examined the ability of spermatozoa co-treated with
fluoride plus a-tocopherol to fertilize zona-intact eggs by in vitro
fertilization (IVF). As shown in Figs 7 and 8, spermatozoa from rats
exposed to fluoride exhibited a significantly lower ability to fer-
tilize eggs compared with the control group (13 � 5.10 vs 72 �
4.69), while the co-treatment with fluoride plus a-tocopherol
caused a significant increase in the ability expressed in percent-
age of spermatozoa to fertilize eggs compared with fluoride
exposure.

DISCUSSION

In the present study, we evaluated whether NADPH oxidase par-
ticipates in the oxidative stress caused by fluoride and examined

Figure 2.
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the protective role of a-tocopherol. Oxidative stress is involved in
the etiology of male infertility (Aitken and Baker, 2006). Male
reproductive defects in humans (Ortiz-Pérez et al., 2003) and
experimental models have been associated with oxidative stress
as a result of fluoride exposure (Ghosh et al., 2002), which pro-
duces a significant reduction in the IVF capacity of spermatozoa
(Izquierdo-Vega et al., 2008). Moreover, a-tocopherol protects
testes and male accessory sex organs from oxidative stress
caused by fluoride exposure (Sarkar et al., 2006).

We have previously reported that fluoride increased ROS pro-
duction in the spermatozoa (Izquierdo-Vega et al., 2008).
However, it is clear from the results presented in this study that
NADPH oxidase participates in the oxidative stress caused by
fluoride because the generation of ROS in spermatozoa was
blocked by DPI (Fig. 3a). This was accompanied by a significant
increase in the catalytic activity of NADPH oxidase (Fig. 4),
without a modification in the amount of p47phox protein in sper-
matozoa from fluoride-exposed rats (Fig. 5b). Many studies have
previously evaluated the activity of NADPH oxidase in human,
equine and rat spermatozoa through generation of ROS induced
by the addition of exogenous calcium ionophore and NADPH and
inhibited by DPI (Aitken et al., 1992; 1997; Sabeur and Ball, 2007;
Vernet et al., 2001). In addition to mitochondrial sources, an enzy-
matic system for ROS generation located in the spermatozoa
plasma membrane was identified as NOX. All subunits of NOX
(gp91phox, p67 phox, p40phox and p47phox) with the exception of
p22phox were detected by western blot and confocal laser scan
microscopy in rodent spermatozoa (Shukla et al., 2005); interest-

ingly NOX5 does not require p22phox association in its activation
(Kawahara et al., 2005). Previously, it was only known that mRNA
of NOX5 is expressed in spermatocytes from human testes (Bánfi
et al., 2001). Recently, proteins identified in human spermatozoa
using LC-MS/MS analysis revealed the presence of DUOX2 in
mature spermatozoa (Baker et al., 2007). Kawahara et al. (2007),
showed the presence of genes DUOX1 and DUOX2 but not the
presence of the gene NOX5 in rodents. NOX5 and DUOX2 are
activated by calcium and do not appear to require subunits for its
activation (Bedard and Krause, 2007). In addition, it has been
reported that fluoride increases the concentration of intracellular
calcium [Cai

2+], in spermatozoa (Chinoy et al., 1995). Recently, it
has been shown that hydrogen peroxide positively modulates
NOX5 activation by c-Abl through a calcium-mediated, redox-
dependent signaling pathway (El Jamali et al., 2008). Consistent
with this observation, the generation of ROS is an important
mediator of fluoride-induced toxicity (Chouhan and Flora, 2008;
Izquierdo-Vega et al., 2008; Sarkar et al., 2006).

In the present study, we evaluated the protective role of
a-tocopherol against oxidative stress caused by fluoride expo-
sure. SOD acts as an important line of defense against ROS by
catalyzing the dismutation of O2

.- into oxygen and hydrogen per-
oxide. We found that the SOD activity was significantly reduced
as a result of fluoride exposure, while the co-administration of
fluoride plus a-tocopherol prevented the diminution in SOD
activity observed in fluoride-exposed rats (Fig. 2a). Additionally,
the co-treatment with fluoride plus a-tocopherol prevented the
increase in the generation of ROS observed in spermatozoa from
fluoride-exposed rats (Fig. 2b). In support of these results, it has
been previously demonstrated that a-tocopherol inhibits the
production of ROS in the spermatozoa of rats exposed to poly-
chlorinated biphenyls (Krishnamoorthy et al., 2007). It has also
been observed in experimental models that a-tocopherol treat-
ment significantly prevents the inhibition of SOD by fluoride
exposure in rats (Guney et al., 2007; Sarkar et al., 2006). In addi-
tion, the generation of ROS in spermatozoa from a-tocopherol-
exposed rats was not inhibited by DPI (Fig. 3b), indicating that the
activity of NADPH oxidase could be modulated by a-tocopherol.

Oxidative damage is considered the main indicator of oxida-
tive stress-induced loss of cellular function (Storey, 1996). Results
of the present study showed an increase in TBARS concentration
of spermatozoa from rats exposed to fluoride, while the
co-administration of fluoride plus a-tocopherol protected
against the oxidative damage caused by fluoride-exposure

Figure 3.

Figure 4.
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(Fig. 2c). Here, oxidative damage to spermatozoa membranes
and the protective role of a-tocopherol were evidenced by elec-
tron microscopy (Fig. 6). Consistent with this observation, a posi-
tive correlation has been observed between the concentrations
of fluoride and TBARS in several tissues, including the testes
(Krechniak and Inkielewicz, 2005). Also, chronic fluorosis causes
oxidative damage in the testes of first- and second-generation
rats (Oncü et al., 2007). Evidence reveals that the peroxidation
process results in the formation of cholesterol domains in model
membranes that increase in a time-dependent manner in paral-
lel with lipid peroxide accumulation, which is inhibited by
a-tocopherol (Jacob and Masson, 2005). Additionally, an inverse
correlation between oxidative damage and human spermatozoa
motility has been shown, which was prevented by a-tocopherol.
In human spermatozoa, the TBARS formation occurs as a result of
mitochondrial disruption in complex I, suggesting that this per-
oxidative damage is induced once intra-mitochondrial antioxi-
dant defenses have been lowered (Koppers et al., 2008). We

Figure 7.

Figure 5.

Figure 6.

44

7

Oxidative damage caused by fluoride in rat spermatozoa

J. App. Toxicol. 2010; ••: ••–•• View this article online at wileyonlinelibrary.comView this article online at wileyonlinelibrary.comCopyright © 2010 John Wiley & Sons, Ltd.

1

2

3

4

5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23



observed that the diminution in SOD activity was accompanied
by an increase in the generation of ROS in the spermatozoa of
fluoride-exposed rats.

In this study, the a-tocopherol treatment did not modify the
urinary fluoride concentration (Fig. 1). Similarly, Guney et al.,
(2007) observed that the plasma fluoride concentration was not
modified by a-tocopherol, suggesting that the pharmacokinetic
of fluoride are not altered by this antioxidant. Unfortunately, we
did not evaluate fluoride concentration in spermatozoon.
However, Inkielewicz and Krechniak (2003) showed that the
testes concentration of fluoride in rats that drank water with
25 ppm of fluoride for 3 months was 4.93-fold greater than in the
control group. Interestingly levels of fluoride in rat testes were
similar to rat urine fluoride levels. The accumulation of fluoride in
testes suggests that fluoride is in contact with spermatozoon.

Spermatozoa quality is a major factor in successful IVF. Here,
we observed that spermatozoa motility was significantly reduced
as a result of fluoride exposure, while spermatozoa motility in the
co-administration with fluoride plus a-tocopherol was not differ-
ent compared with the control (Table 1), suggesting the partici-
pation of ROS in spermatozoa motility. It has been shown that
ROS affect spermatozoa motility and ATP concentration through
a mechanism independent of oxidative phosphorylation
(Armstrong et al., 1999), exerting a direct action on flagella (de

Lamirande and Gagnon, 1992). High levels of ROS are associated
with reduced motility and fertilization potential (Aitken et al.,
1998).

We previously found that fluoride exposure caused a decrease
in spermatozoa IVF capability (Izquierdo-Vega et al., 2008). Here,
the importance of the regulation of oxidative stress in fertilization
was evaluated with the co-exposure of fluoride plus
a-tocopherol. a-Tocopherol prevented the oxidative stress and
oxidative damage and also the diminution of IVF (Figs 7 and 8).
Supporting these results, a-tocopherol has been shown to
improve sperm motility and fertility in men (Suleiman et al.,
1996).

In conclusion, the results of this study indicate that NADPH
oxidase participates in the oxidative damage caused by fluoride
exposure in rat spermatozoa. a-Tocopherol protects against oxi-
dative damage in spermatozoa caused by fluoride exposure.
Further studies are required to elucidate the presence of NOXs
isoforms present in spermatozoa that could participate as a
mediator of ROS production spermatozoa by fluoride exposure.
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