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SUMMARY

In this paper, some experimental results and a performance analysis of a general control methodology9
for swinging up and stabilizing underactuated two-link robots are presented. The analyzed method-
ology is based on Euler–Lagrange dynamics, passivity analysis, and dynamic programming theory. The11
applied control method preserves the general structure of a suboptimal control approach, while the func-
tional defining a performance index is based on the underactuated system energy. In order to illustrate13
the presented approach, the swing up and stabilization control of two experimental electromechanical
underactuated systems about an unstable equilibrium point are shown. Copyright � 2011 John Wiley &15
Sons, Ltd.
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1. INTRODUCTION19

Underactuated robots are well-known benchmark systems [1], where the problems of regulation on
a set-point, swinging up and balancing around an equilibrium point, as well as trajectories tracking21
becomes a challenge. For years the swing up and stabilization control laws of underactuated robots
have been divided into two structures: the first one to balance up to upper position and the second23
one to stabilize it at this position [2, 3]. The underactuated robots control systems studied in the
literature by different approaches involve two switching controls [4–8], the first one swinging25
up the system to upper unstable equilibrium point and the second one to balance it about this
equilibrium. This kind of approaches are discontinuous and involves global closed-loop stability27
problems; thus, the stability analysis becomes local.

The rigid-body mechanics of robot manipulator motion or flight control is often formulated with29
the general equation obtained from Lagrangian mechanics:

D(q)q̈+C(q, q̇)q̇+G(q)=�. (1)31

The position coordinates q∈Rn with associated velocities q̇ and accelerations q̈ are controlled
via the vector �∈Rn of driving forces [6]. The generalized moment of inertia D(q)∈Rn×n is a33
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symmetric and positive definite matrix, the Coriolis, centripetal forces C(q, q̇)q̇, and the gravita-1
tional forces G(q) all vary along the system trajectories. From the Euler–Lagrange formulation,
(1) can be generally written as follows:3

d

dt

[
x1

x2

]
=
[

x2

D(x1)
−1[�−C(x)x2−G(x1)]

]
, (2)

where x ∈M⊆R2n , x1=q∈Rn , x2= q̇∈Rn , and ��u∈Rn is the control input. Since our problem5
formulation is given for stability around an equilibrium point, xeq, then the nonlinear system (2)
is rewritten as:7

˙̃x = f (x̃ )+g(x̃)u, (3)

where x̃= x−xeq. Based on dynamic programming and passivity concepts, in a recent contribution9
[9], a suboptimal control law is proposed. Where an approximation of Bellman function as a
Lyapunov function is introduced. Taking the system passivity property and by using dynamic11
programming, the synthesis of a nonlinear control law is achieved. In order to figure out the
nonlinear control law, it is necessary to solve first, a Linear Quadratic Regulator (LQR) from the13
linearized system of (3) and then, a Ricatti equation. These results are then used to find a useful
Lyapunov function for the global nonlinear system. This methodology becomes quite involved15
for systems with higher degrees of freedom (DOF). Thus, it is quite illustrative, to reveal some
computing details, to figure out this general methodology, via some physical implementations.17
This contribution aims to explicitly solve the control law problem, and give some guidelines to
physical implementations on electromechanical benchmarks. This paper is organized as follows:19
In Section 2, the suboptimal control method is presented in a general framework. In Section 3, the
method is constrained to 2 DOF under actuated robots and completely solved. In Section 4, some21
experimental results and comparison against numerical simulation, for 2 DOF well-known robots,
are presented. Finally, Section 5 give some concluding remarks.23

2. SUB-OPTIMAL CONTROL LAW (FULLY ACTUATED CASE)

Recently, a swing up and stabilization control law has been presented with a non-switching25
control law (swinging and stabilizing up [9]). Up to our knowledge, this technic is a novel
approach, involving a complete analysis of a global single control law to swinging and stabilize27
an underactuated system. The Lyapunov function given on [9] is defined by:

V (x̄)= 1

2
kE Ẽ(x̄)

2+ 1

2
x̄T
[
P̄11 P̄12

P̄21 P̄22

]
︸ ︷︷ ︸

P̄

x̄ ∈R (4)

29

where x̄= [x̄1, x̄2]T∈R2n , x̄1= x1−x1eq∈Rn is the angular position error, x̄2= x2−x2eq∈Rn is
the angular velocity error, P∈R2n×2n is a strictly positive definite matrix, P̄12= P̄T

21, Ẽ=E−Eeq,31
E(x̄ )=K (x̄)+U (x̄1) ‡ ∈R is the system total energy about the desired controllable equilibrium
point, K (x̄ ) is the system kinetic energy,U (x̄1) is the potential energy about the desired controllable33
equilibrium point, and kE is a positive energy gain.

Note that our approach is based on dynamic programming and Euler–Lagrange system properties35
with the advantage of global asymptotic stability [9], where the control law has the following
structure:37

u=−R−1{kE Ẽ(x̄ )x̄2+D−1(x̄1)[P̄
T
12 x̄1+ P̄T

22 x̄2]}, (5)

‡ K (x̄)= 1
2

∑n
i=1miv

2
i = 1

2 x
T
2 D(x1)x2; U (x̄1)=

∑n
i=1mihi g where hi ∈ Rn are the i th height of the i th link respect

to the mass center, and g is the gravitational constant. Finally, Eeq=E(x)|x=xeq .

Copyright � 2011 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2011)
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where P̄12, P̄22∈Rn×n are symmetric and positive definite matrices, R∈Rn×n is a positive definite1
diagonal matrix. Then, the control law to be applied for each link can be obtained as follows:

u=−kE Ẽ(x̄)R
−1 x̄2−k(x̄)

[
x̄1

x̄2

]
, k(x̄ )∈Rn×2n (6)

3

where k(x̄ )= [k1(x̄),k2(x̄)], reads:

k(x̄ )= [R−1D−1(x̄1)P̄
T
12 R−1D−1(x̄1)P̄

T
22]. (7)5

In order to solve the former nonlinear control law (in P̄12 and P̄22), it is necessary to solve a variant
Ricatti equation. Instead of this, we can obtain an approximated solution around the equilibrium7
point, which must coincide with the steady-state solution of the Ricatti equation. The key idea of
our method follows.9

Observe that the nonlinear control law (6) applied to the system (3) about an unstable equilibrium
point of the system seems similar to an LQR controller in a neighborhood of the equilibrium point;11
i.e. when x→ xeq. Assume that the linearization of the nonlinear system (3) is observable and
controllable. Then, a result can be formally stated in the following:13

Proposition 2.1 (Patricio Ordaz-Oliver et al. [9] Nonlinear system approximation)
Consider that the system (3) is linearized around an equilibrium point (stable or unstable). Assume15
that the linearized system is controllable. Then the control law (6) follows a reference and around
the equilibrium point, it holds:17

lim
x→xeq

(
−R−1kE Ẽ(x̄ )x̄2−k(x̄)

[
x̄1

x̄2

])
≈0− lim

x→xeq
(k(x̄ ))≈−R−1BT P̄ x̄, (8)

where B∈R2n×n is the linear representation of g(x), and P̄ ∈R2n×2n is a matrix gain given by the19
steady-state Riccati solution. Additionally the following approximation is fulfilled:

limk(x̄ )|x→xeq ≈ R−1BT P̄. (9)21

The gains can be obtained from (9) (via an LQR solution), and then we replace this solution in
the nonlinear control law (6)–(7).§23

Remark 2.1
Proposition 2.1 is used in order to obtain the whole set of parameters of the nonlinear control (5),25
due to the matrix P̄ can be straightforward obtained by solving the steady-state Riccati equation,
and the elements R and B are given.27

Remark 2.2
The parameter kE is chosen heuristically. Observe that the term R−1kE Ẽ(x̄)x̄2 is zero when x→ xeq.29

In this paper by simplicity and exposition clarity, the two-link swing up and stabilization control
problem is explicitly solved, because when the DOF becomes higher, the gain choice is hindered.31

3. UNDERACTUATED 2-LINK ROBOT DYNAMICS

The standard general dynamic equations are given by (1), but when they have the underactuated33
property, i.e. n is bigger than the number of control inputs, then the system can be rewritten as
follows:35

D(q̂) ¨̂q+C(q̂, ˙̂q) ˙̂q+G(q̂)=�, (10)

§This solution gives the P̄12 and P̄22 matrix values.

Copyright � 2011 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2011)
DOI: 10.1002/oca
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where q̂= [qa,qu]T, qa is the actuated variable, and qu is the underactuated variable. For a two1
DOF, when the first joint has the actuator and the second link is the underactuated joint, the
classical underactuated model has the following structure:3 [

d11 d12

d21 d22

]
︸ ︷︷ ︸
D(q̂)=D(x1)

[
q̈a

q̈u

]
︸ ︷︷ ︸
¨̂q=ẋ2

+
[
c11 c12

c21 c22

]
︸ ︷︷ ︸
C(q̂, ˙̂q)=C(x)

[
q̇a

q̇u

]
︸ ︷︷ ︸
˙̂q=x2

+
[
g1

g2

]
︸ ︷︷ ︸

G(q̂)=G(x1)

=
[
u

0

]
︸︷︷︸

�

(11)

Or from (2) it can be rewritten as follows [6]:5

d

dt

⎡
⎢⎢⎢⎢⎣
x1a

x1u

x2a

x2u

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

x2a

x2u

D(x1)
−1

[[
u

0

]
−C(x)

[
x2a

x2u

]
−G(x1)

]
⎤
⎥⎥⎥⎥⎥⎦ . (12)

The control law (6) in closed loop with (12) holds the following proposition for two link vertical7
underactuated robots.

Proposition 3.1 (Underactuated 2-link control solution, Patricio Ordaz-Oliver et al. [9])9
If the system is underactuated as in (11), the control law for the actuator is given by:

u=−kE Ẽ(x̄)

det(R)
r22 x̄2a−

4∑
j=1

k1 j (x̄)x̄ j , (13)
11

where x̄2a is a scalar, and

k1 j (x̄)=
d22 p̄ j3−d21 p̄ j4

r1 det(D(x̄ ))
, (14)13

where p̄ j3, p̄ j4 are the entries of matrix P̄ used in (4).¶

For a detailed proof of this proposition please refer to [9]. In order to illustrate our control15
approach, let us give a numerical and experimental example which is applied on two well-known
2-DOF robot platforms (Pendubot and Rotatory pendulum system).17

4. EXPERIMENTAL RESULTS

In this section, the experimental setup and system realization are described for two underactuated19
systems, and then the experimental data are discussed and analyzed.

4.1. Hardware21

Two-DOF underactuated robots are used as benchmark to test our methodology (Figures 1 and 2).
These platforms are designed by Quanser (Mechatronics Control Kit Model M-1). They are23
composed of a 2 rigid-links, low-friction, and two joints. The parameters of the Pendubot system
are: a1=m1l2c1+m2l21 + I1=0.0022, a2=m2l2c2+ I2=0.00101, a3=m2l1lc2=0.0008, a4=m1lc1+25
m2l1=0.0182, a5=m2lc2=0.0065, and the Rotatory pendulum parameters are: b1= I1+m2l21 =
0.0015, b2=m2l22 =0.0013, b3=m2l1l2=0.0056, b4= I2+m2l22 =0.012 and b5=m2l2=0.0055.27
In both cases, mi are the mass of i th link, li is the length of i th link, lci is the length to the center
of the mass of the i th link, Ii is the inertia moment of i th link, i =1,2, qa�q1 and qu�q2, the29

¶From Proposition 2.1, note that R is a diagonal matrix.

Copyright � 2011 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2011)
DOI: 10.1002/oca
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Figure 1. Pendubot.
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Figure 2. Rotatory pendulum.

Table I. Dynamics of the two underactuated robots.

Dynamic Pendubot Rotatory pendulum

d11 a1+a2+a3 cos(x2) b1+b2 sin
2 x2

d12=d21 a2+a3 cos(x2) b3 cosx2
d22 a2 b4
c11 −a3 sin(x2)x3

1
2b2 sin(2x2)x4

c12 −a3 sin(x2)(x3+x4) −b3 sin x2x4+ 1
2b2 sin(2x2)x3

c21 −a3 sin(x2)x3
1
2b2 sin(2x2)x3

c22 0 0
g1 a4g cos(x1)+a5g cos(x1+x2) 0
g2 a5g cos(x1+x2) −gb5 sinx2

acceleration of gravity constant g=9.81m/s2, where subindexes 1 and 2 stand for the first and1
second link, respectively [10].

The system dynamics stated by (11) are given in Table I.3

4.2. Firmware

A Digital Signal Processor C6713DSK board control system was integrated on a 16-bit expansion5
bus slot of a personal computer. The real-time toolbox compiler (MATLAB SIMULINK) provided
the programming environment. The control input is transmitted to a 24Volt DC Motor with 10007
Cnt/Rev Optical Encoder from Pittman Inc., 24VDC at 2.1AMP power supply is employed from
ELPAC Power Systems [10].9

Copyright � 2011 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2011)
DOI: 10.1002/oca
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Table II. Dynamics of f (x) [6].

Pendubot and rotatory pendulum

f1(x) x3
f2(x) x4
f3(x) D−1(x1)(−C(x)x2−G(x1))f4(x)

Table III. Dynamics of g(x) [6].

Pendubot Rotatory pendulum

g1(x)
a2

det(D(x1))
b1

det(D(x1))

g2(x) − a2+a3 cos x2
det(D(x1))

−b3 cos x2
det(D(x1))

det(D(x1)) a1a2+a23 cos
2 x2 b4(b1+b2 sin

2 x2)−b23 cos
2 x2

Table IV. Parameters of A [6].

Pendubot Rotatory pendulum

e11
a2a4−a3a5
a1a2−2a23

g 0

e12
−a3a5

a1a2−2a23
g b2

b1b4−b23
g

e21
(a1+a3)a5−(a2+a3)a4

a1a2−2a23
g 0

e22
(a1+a3)
a1a2−2a23

g b1+b4
b1b4−b23

g

4.3. Experimental conditions1

The performance of the proposed controller in a physical experiment is shown against the imple-
mentation on a numerical simulation [9]. Experiments are carried out at high velocities to show the3
system controller performance at inertial dominated dynamics. In order to apply Proposition 2.1,
let use take the linearized model ẋ = Ax+Bu, where B is obtained by Taylor series figured out5
on the desired upper unstable position.‖

From (11), the dynamics of D(·),C(·), and G(·) for the pendubot and rotatory pendulum systems7
correspond to Table I, and Equations (10) and (11). Or rewritten in a state space representation,
functions f (x) and g(x) (as in (3)), have the dynamics given in Table II, III.9

By taking the linearization of the former nonlinear system, at the top position (upper equilibrium
point) of the corresponding system, the structure of the matrix A reads:11

A=

⎡
⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

e11 e12 0 0

e21 e22 0 0

⎤
⎥⎥⎥⎥⎦ ,

where for each system, the matrix A is given in Table IV.13

‖The pendubot top position is (x1, x2, x3, x4)= (�/2,0,0,0) and the Rotatory pendulum top position is (x1, x2, x3, x4)=
(0,0,0,0).

Copyright � 2011 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2011)
DOI: 10.1002/oca
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Table V. Parameters of B [6].

Pendubot Rotatory pendulum

B1(x)
a2

a1a2−2a23

b1
b1b4−b23

B2(x) − a2+a3 cos x2
a1a2−2a23

−b3
b1b4−b23

Table VI. Numerical simulation.

Matrix Pendubot Rotatory pendulum

Q diag(8,11.5,5,5) diag(8,11.5,5,5)
R 2.5 2.5
kE 49.8 10

Table VII. Experimental result.

Matrix Pendubot Rotatory pendulum

Q diag(6.87,7.8,4.5,5.2) diag(6.8,8.5,6.5,6.55)
R 2 2
kE 12.5 8.6

And B follows:1

BT= [0 0 B1 B2].

For each system, B is given in Table V.3
From (8), it follows:

−(k11(x̄ ) k12(x̄) k13(x̄ ) k14(x̄))x̄ ≈− 1

r1
BT P̄ x̄, (15)5

where P̄∈R4×4, P̄= [P̄11 P̄12; P̄21 P̄22] and P̄11∈R2×2, P̄11= [ p̄11 p̄12; p̄21 p̄22], P̄12= P̄T
21=

[ p̄13 p̄14; p̄23 p̄24], P̄22= [ p̄33 p̄34; p̄43 p̄44], and R∈R1×1. Then,7

− 1

r1
[0 0 B1 B2]P̄ x̄ =−(k1 k2 k3 k4)x̄ =−K x̄, (16)

and the two link underactuated system at the top position, with (14), can be approximated as:9

(k11(x̄) k12(x̄) k13(x̄ ) k14(x̄))| f (x̄)→ f (0)≈ (k1 k2 k3 k4), (17)

where x̄= [x̄1, x̄2]T∈R2n (see Equation (4)), (k1,k2,k3,k4)=K are obtained from the Riccati11
equation solution (for linear system, this is the LQR solution), and this solution gives the p̄13, p̄14,
p̄23, p̄24, p̄33, p̄34, p̄43, and p̄44 values.13
Since the solution of matrix P̄ gives four equations and seven unknown parameters, let us fix

up the following parameters, p̄13=5, p̄24=2 and p̄34=6, and then, the parameters of matrix P̄15
are obtained as follows:

p̄14= (k1− p̄13B1)

B2
, p̄33= (k3− p̄31B4)

B2
, p̄23= (k2− p̄24B4)

B3
, p̄44= (k4− p̄34B3)

B4
, (18)17

where

K = (k1 k2 k3 k4)= [0 0 g1(x̄1) g2(x̄1)]P̄ (19)19

Copyright � 2011 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2011)
DOI: 10.1002/oca
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Figure 3. Pendubot: first link position.
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Figure 4. Pendubot: first link velocity.

and the parameters p̄11=100, p̄12=0, p̄21=0 and p̄22=100 are proposed such that the1
matrix P̄>0.

The tuning of the gains is not easy and special attention must be paid to avoid misleading3
conclusions. Since a comparison between similar but structurally different dynamics are introduced,
we assign the same value to the common gains. By taking the linearization of the system, linear5
gains for the LQR solution are obtained for the numerical simulation (Table VI) and for the
experimental implementation (Table VII), and by trial error a feasible kE gain is found. With7
these matrices given by Tables VI and VII, and the scalar gains there in, we finally show the

Copyright � 2011 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2011)
DOI: 10.1002/oca
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Figure 5. Pendubot: second link position.
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Figure 6. Pendubot: second link velocity.

numerical and the experimental results obtained by applying the control law (13). An analysis of1
the controlled system is shown in the following subsection.

4.4. Experiments3

For a better visualization of the plots, some figures are shown in two subfigures. The initial
conditions for both examples are given by the lower stable equilibrium point, i.e. the pendubot5
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Figure 7. Pendubot: control signal.
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Figure 8. Pendubot: Lyapunov stability.

lower stable equilibrium point is (x1, x2, x3, x4)= (−�/2,0,0,0), the rotatory pendulum lower1
equilibrium point is (x1, x2, x3, x4)= (�,0,0,0), and the control objective is to follow the reference
at the desired upper instable position, i.e. the pendubot top position is (x1, x2, x3, x4)= (�/2,0,0,0),3
the Rotatory pendulum top position is (x1, x2, x3, x4)= (0,0,0,0). For instance, in Figures 3, 5, 9,
and 11, the subfigure 1 shows the experimental position in a time interval. Subfigure 2 shows the5
numerical simulation of position in some time interval. In Figures 4, 6, 10, and 12, the subfigure 1
shows the experimental velocity, whereas subfigure 2 shows the numerical simulation of velocity.7
The stability properties of numerical and experimental results are shown in Figures 8 and 14. The
Figures 7 and 13 show the numerical and experimental control signal.9
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Figure 9. Rotatory pendulum: shoulder position.
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Figure 10. Rotatory pendulum: shoulder velocity.

Figures 3–6 shows how a dynamic displacement of the solution manifold converges to reference,1
i.e. the pendubot dynamics tends to upper unstable equilibrium position x1→�/2, x2→0 x3→0,
and x4→0. When a comparative plot of position errors is shown at high velocities of the numerical3
simulation and experiment, after a transient of 6 s, the numerical simulation yields an error whereas
the experimental implementation reaches the reference about 3 s. However, a bigger joint velocity5
is displayed in the simulation, which implies more applied torque. Besides that, in the experimental
implementation, a saturation threshold has been used (torque saturation is employed at ±9.5Nm,7
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Figure 11. Rotatory pendulum: arm position.
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Figure 12. Rotatory pendulum: arm velocity.

see Figure 7). Figure 8 shows the controlled system asymptotic stability achieved via the Lyapunov1
function (4), the Lyapunov functions for each system are detailed in [9].

Main results of the rotatory pendulum system are presented in Figures 9–14. Figures 9 and 113
show the time evolution of articular position angles, which converge to top unstable configuration
from initial conditions at 4 s. Figures 10 and 12 show how the articular velocities converge to5
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Figure 13. Rotatory pendulum: control signal.
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Figure 14. Rotatory pendulum: stability.

(x3=0, x4=0). Applied torque is shown in Figure 13. Finally, Figure 14 shows the controlled1
system asymptotic stability achieved via the Lyapunov function (4).

Remark 4.13
The main reason why the experimental and simulation results do not present the same performance
is because in the simulation we consider ideal conditions, i.e. we do not consider uncertain non-5
structured dynamics, such as tribology forces, disturbance, and others. Note that it is difficult to
include these in the simulation, because they are uncertain. This problem can be seen in the tuning7
control gains as well, (Tables VI and VII).
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5. CONCLUSION1

Experimental results of a class of underactuated robot control by using a sub-optimal controller
are presented. Satisfactory results are obtained by applying the suboptimal nonlinear control law3
presented. By comparing it with some previous results, our proposal does not need to switch
control laws when the system is near to the desired equilibrium point, and as the system approach5
to this equilibrium, the nonlinear control law becomes an LQR controller. By applying our gener-
alized control law methodology, and by comparing a numerical simulation against a experimental7
implementation, control approach applied is illustrated.
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