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PROLOGUE 
 
 
 
 
Collaboration among world-wide universities is paramount; in this sense, both students and 
researches can exchange ideas fluently. 
 
The University of Lyon 2, through the University Institute of Technology (IUT) and in 
particular the Laboratory of Informatics for the Enterprise and Production Systems (LIESP) has 
launched a project called e-Link. This project is sponsored by the European Union under the 
Erasmus Mundus program. Although not part of the e-Link project itself, the Universiry of 
Lyon 2 runs its own program for Invited professors, with which the UL2 gathers scientist and 
researchers from abroad. 
 
Fortunately, these two programs converged in time and space. While a great number of students 
of the e-Link project were still working at IUT and LIESP, prof. Omar López-Ortega came 
along. 
 
This technical report is the result of this tri-party collaboration. The e-Link students attended 
the course on Fuzzy Logic and developed some projects. The core ideas are transcribed here. 
 
The objective of the course and, consequently, of this technical report is to present basic notions 
of fuzzy logic for building Mamdani rule-based systems with JFK 1.0 (java fuzzy kit). The 
authors will be truly satisfied if this effort echoes for long in the students’ and members’ that 
were once part of this collaboration.  
 
The authors express their most sincere gratitude to Prof. Akhter Hossain, who organized and 
kept track of everything for this course to suceed, and also to the e-Link students that patiently 
and with passion attended the course. 
 



 
 
 

Chapter 1: Basics of Fuzzy sets and Fuzzy Systems 
 
1.1 Fuzzy systems overview 
 
The real world presents an endless number of complex systems. Take, for example, the 
variables that are present to grow tomatoes in a greenhouse. Those variables, among others, 
interact in complex ways, which can not be modelled by equations. 
 
 

 
 
 
Teachers also face this kind of problems when deciding the final grade for pupils, since they 
comply differently with the tasks assigned along the course. 
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Such variables can be modeled with fuzzy numbers and such complex relations among these 
variables can be represented by fuzzy rules, as it is shown next: 
 

 
 
 
By using fuzzy logic we can express “qualitative or “soft” relationships such as “the higher the 
absences the lower the grade” or “high number of absences and a good project provide a grade 
that is good but not necessarily excellent”. 
 
However... 
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1.2 Fuzzyfication 
Fuzzy logic is a form of multi-valued logic derived from fuzzy set theory to deal with reasoning 
that is “approximate rather than precise”. In contrast with "crisp logic", where binary sets have 
binary logic, fuzzy logic variables may have a truth value that ranges between 0 and 1 and is 
not constrained to the two truth values of classic propositional logic. Furthermore, when 
linguistic variables are used, these degrees may be managed by specific functions called 
membership functions. Indeed, Fuzzy logic provides tools so we can manage such complex 
relations in a simpler way, by mapping the real-world values into a space ranging from 0 to 1. 
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The “bridge” is called “fuzzyfication” when we go from the real world to the fuzzy world. The 
inverse operation is called “defuzzification”. 
 
 

 
 
 
 
The actual fuzzyfication process is done by membership functions, whereas one form of 
defuzzifying what is fuzzy is through the center of gravity. 
 
 
 

 
 
 
Once in the fuzzy world, a number of good things can be done. We can, for example, develop 
fuzzy rule bases. As for this, we can have two types: (i) The Mamdani model and (ii) the Takagi 
Sugeno Kan model. This latter does not require a specific deffuzification procedure, while 
Mamdani rulebases do. 
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In this technical report, we center in the Mamdani model. To understand it we need to 
understand the basics of fuzzy mathematics: 
 

 
 
 
But first, we must do the fuzzyfication process. Fuzzyfication serves to analyze analog input 
values in terms of logical variables that take on continuous values between 0 and ; in contrast to 
classical or digital logic, which operates on discrete values of either 0 or 1 (true or false). We 
can assimilate this to the partition of the real-world variable into a series of regions called fuzzy 
sets. We use functions for that. 
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So, when a real-world value is computed through one of those functions, we obtain the degree 
of membership (dom) of that value on the referred region. This is why they are called 
membership functions. 
 
 
 

 
 
 
Former figure illustrates several important issues. Firstly, crisp, real-world values are mapped 
into fuzzy values by means of a membership function, generally called with the greek letter 
“mu”. Secondly, crisp values (horizontal axis) are partitioned into fuzzy sets, which in turn are 
labeled with linguistic terms1. Therefore, when crisp values are computed with a membership 
function, their degrees of membership (dom) are obtained, as represented in the vertical axis of 
the latter figure. 
 
 
Membership functions are many. The following figure depicts a Triangular function. 
 

                                                 
1 Linguistic terms are also known as Linguistic Labels 
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A Trapezoidal function takes the following form: 
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The fuzzification process ends when a real-world variable is fully partitioned and the regions 
are labeled accordingly: 
 

 
 
In the previous figure, uod means Universe of Discourse (the actual crisp values of the real-
world  variable). Hence, “uod_i” corresponds to the initial crisp value of the UoD, whereas 
“uod_f” is the final value of the UoD. 
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Chapter 2. Mathematical background. Part 1. 
 
2.1 Set operations 
In this chapter we introduce three basic operations between fuzzy sets: (i) Intersection, (ii) 
Union and (iii) Complement. Then, we present a special set of operators called Triangular 
norms and Triangular co-norms, used as an extension of the basic intersection and union, 
respectively. 
 
Remember, a real-world variable is partitioned into a series of regions called fuzzy sets: 
 
 

 
 
The Intersection of two fuzzy sets is: 
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Acordingly, the Union of two fuzzy sets is: 
 

 
 
 
Finally, the Complement of a fuzzy set is defined like the following figure illustrates: 
 

 
 
 
2.2 Triangular norms and co-norms 
The Intersection and the Union of sets can be computed not only with the minimin and the 
maximum operators. There are a number of functions that have been developed (Hammacher, 
Weber, Yagger, to name but a few) and used within the fuzzy logic framework. They are called 
Triangular Norms and Triangular Co-Norms. When we use them the results change a bit, as 
exemplified in the following figures. 
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In the former figure, given two sets, we compute the basic intersection operation and the t-norm 
called Hamacher (the curve-shaped set in red). 
 

 
 



The former illustration shows the result of computing a Weber T-norm. 
 
As for the computations of T-conorms we present also results. 
 

 
 
The former illustrations depicts both the simple Union of fuzzy sets and the computation of the 
Weber T-conorm. In the next graphic we show the computation of the Hamacher T-conorm. 
 

 



 
 
The triangular operations of T-norms and T-conorms help to compute values residing around 
the minimum and the maximum, respectively, but never reaching those. It is interesting to 
experiment the calculation of fuzzy rule bases with T-norms and T-conorms, since the results 
vary slighty. 



 

Chapter 3. Mathematical background. Part 2. 
 
3.1 Cartesian Product 
In this chapter we present more complex operations with fuzzy sets, namely the Cartesian 
Product and the Fuzzy composition of functions. With the completion of this chapter readers 
are ready to solve fuzzy rule-bases according to the Mamdani model. 
 
We have stated previously that variables in the real world are related so change in one or more 
affect the behaviour or values of another. This situation defines a MISO system (Multiple 
Inputs Single Output). An example of such system is presented in the following illustration: 
 

 
 
The mathematical manner of expressing the fuzzy relation(s) between two variables (input – 
output) is done through the cartesian product of two given fuzzy sets, expressed as R. 
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Let us take fuzzy sets IA (input variable) and OA (output variable) as depicted in the following 
illustration. 
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R is a relationship found through Cartesian Product 

IA = {(i1, dom1), (i2, domi2)…(in, domin) 

 OA = {(o1, domo1), (o2, domo2)…(on, domom)} 
 

dom := degree of membership



 
We find the Cartesian Product R by accommodating a matrix in which rows define the real-
worl input values and columns represent the real-world output values. However, we are only 
interested in the way that the actual degrees of membership for input and output are related. 
 
Therefore... 
 

 
 
 
Each entry of matix R is the minimum value of the degree of membership of input and output. 
 
Let us present and example. The reader is encouraged to do the maths him/herself. 
 

 

IA = {(i1, domi1), (i2, domi2)…(in, domin)} and  

OA = {(o1, domo1), (o2, domo2)…(on, domom)}, R is: 
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… 
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R
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On the former figure, 
 
IA = {(5,1)(6,1)(7,1)(8,1)(9,1)(10,1)(11,0.8)(12,0.6)(13,0.4)(14,0.2)(15,0)} 
OA = {(5,1)(6,1)(7,1)(8,1)(9,1)(10,1)(11,1)(12,1)(13,1)(14,1)(15,1)(16,0.8)(17,0.6)(18,0.4)(19,0.2)(20,0)} 
 
Therefore: 

R = IA x OA 
 

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
5 1 1 1 1 1 1 1 1 1 1 1 0.8 0.6 0.4 0.2 0 
6 1 1 1 1 1 1 1 1 1 1 1 0.8 0.6 0.4 0.2 0 
7 1 1 1 1 1 1 1 1 1 1 1 0.8 0.6 0.4 0.2 0 
8 1 1 1 1 1 1 1 1 1 1 1 0.8 0.6 0.4 0.2 0 
9 1 1 1 1 1 1 1 1 1 1 1 0.8 0.6 0.4 0.2 0 
10 1 1 1 1 1 1 1 1 1 1 1 0.8 0.6 0.4 0.2 0 
11 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.4 0.2 0 
12 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.2 0 
13 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0 
14 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
Take any entry of the former matrix R, and you will notice that the value is the minimun of the 
corresponding membership functions for that chosen entry. 
 
The most important thing about R is that it represents the knowledge of the system, even though 
such knowledge were adquired my taking measures and experimentation. 
 
3.2 Composition of Functions 
We now move to another important operation, called the min-max composition. For that, we are 
going to require the Cartesian Product. 
 



 
 
The former figure illustrates a nice situation. We have already partitioned both input and output 
variables into regions (IA, IB, IC, OA, OB, OC). The model is not always what appears as an 
actual value when the system works (but it should respond to that). The actual input value is 
represented by IA’, and the taks is to find the actual output value OA’, taking into account that 
IA and OA are related via matrix R previously calculated. 
 
This is done with the min-max composition. 
 
IA’ is a vector, and R is a matrix. It is straight forward to calculate, in the fuzzy world, the 
multiplication of vector IA’ with matrix R. 
 
It’s just that some changes are applied to the classical operation. 
 

1. Multiplication is now the minimun 
2. Addition is replaced by the maximum 

 
...of the degrees of membership. 
 
We present an example. Then again, readers are encouraged to do the maths. 
 
 

We have now -> R = IA X OB 
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A partial calculation is: 
 

 
 
 
The entire calculation leads to finding OA’: 
 
Given the relationship R (already calculated), and given the input set IA’ defined as follows,  
 
IA’ = {0.9, 0.9, 0.8, 0.8, 0.8, 0.7, 0.7, 0.5, 0.3, 0.1,0}, 
 
we proceed to calculate the first element of the composition: 
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IA = {(5,1)(6,1)(7,1)(8,1)(9,1)(10,1)(11,0.8)(12,0.6)(13,0.4)(14,0.2)(15,0)} 

IA’ = {(5,.9)(6,.9)(7,.8)(8,.8)(9,.8)(10,.7)(11,0.7)(12,0.5)(13,0.3)(14,0.1)(15,0)} 

R 

[0.9, 0.9, 0.8, 0.8, 0.8, 0.7, 0.7, 0.5, 0.3, 0.1,0] 

R 

5 
 6 
7 
8 
9 
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5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20 

1  1  1  1  1   1   1    1    1    1    1   0.8  .6  .4  .2   0.0 

 

  .6 .6 .6 .6 .6  .6  .6    .6   .6   .6   .6  .6  .6   .4   .2  0.0 

IA’ 

OA’ = IA’ · R 



 
OA’ [1] = [max{min(0.9,1), min(0.9,1), min(0.8,1), min(0.8,1), min(0.8,1), min(0.7,1), 
min(0.7,0.8), min(0.5, 0.6), min(0.3, 0.4), min(0.1, 0.2), min(0,0)}] 
 
OA’ [1] = [max{0.9, 0.9, 0.8, 0.8, 0.8, 0.7, 0.7, 0.5, 0.3, 0.1, 0}] 
 
OA’ [1] = [0.9] 
 
By applying the same procedure we find the resultant output value OA’: 
 
OA’ = {0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.8, 0.6, 0.4, 0.2, 0} 
 
3.3 Generalized Modus Ponens 
With the operations of chapter two and three, we have laid out the foundations to develop and 
solve fuzzy rulebases according to the Mamdani model. 
 
The Mamdani model, by the way, is based on the Generalized Principle of Extension: 
 
|= A’ AND (A -> B) -> B’ 
B’ = A’ · (A X B) 
 
Just what he have done!!! 
 



 

Chapter 4. Fuzzy rule bases 
 
4.1 Fuzzy rule bases 
We have previously seen that real-world variables are related, that is to say, what happens in 
one region of the input reflects a corresponding value in the output. 
 
 

 
 
4.2 The Mamdani model 
According to Mamdani, this relation can be expressed in terms of rules, like it is shown in the 
above figure. 
 
However, things are more complicated, because every variable has more than one region, as 
exemplified next: 
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A simple fuzzy rule base represents the relations that are formed between input and output 
regions. 
 
Things, nevertheless, can get more complicated, because a given output variable depends on 
more than one input variable. This type of systems are called MISO (Multiple Inputs Single 
Output), as it is depicted next. 
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Therefore, given a rule base as follows: 
 
Rule1: IF x1 is IA1 AND x2 is IA2··· AND xn is IAn THEN OA 
Rule2: IF x1 is IB1 AND x2 is IB2··· AND xn is IBm THEN OB 
··· 
Rulen: IF x1 is IC1 AND x2 is IC2 ··· AND xn is Icm THEN OC 
 
It is necessary to split ever rule to solve the puzzle: 
 
R11 = IA1 x OA 
R12 = IA2 x OA 
R1m = IAm x OA 
R21 = IB1 x OB 
R22 = IB2 x OB 
R2m = IBm x OB 
Rn1 = IC1 x OC 
Rn2 = IC2 x OC 
Rnm = ICm x OC 
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Once we have calculated all R’s, then we must solve the rule base by using the min-max 
composition on every R for every rule. This causes a trememdous burden.  
 
Instead, mathematicians have come up with a simple algoritm to solve fuzzy rulebases 
according to the Mamdani model. 
 
4.3 Algorithm to resolve Mamdani fuzzy rulebases 
 
Mamdani algorithm: 
 
1. For each rule j, compute the degree of fulfilment BETAj: 
BETAj = mu(x1) AND mu(x2) ··· AND mu(xn) 
 
2. For each rule j, derive the output fuzzy set B’j: 
B’j = BETAj AND muBJ(y) for all y in output 
 
3. Compute the aggregated fuzzy set B’: 
B’ = UNION(B’j) for all y in output 
 
The Mamdani algorithm can be represented graphically: 
 

1,2. The degree of fulfilment will give a partial output set: 
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3. All the partial output sets are aggregated by using the UNION operator. 
 

 
 
4.4 Defuzzification: Center of Gravity 
Finally, the output crisp value is obtained via, among other defuzzitication methods, the center 
of gravity. 
 
Center of Gravity. 
cog = [SUM{y·mu(y)} / SUM {mu(y)} 
 
For all y in Y 
 
What we get, as stated previously, is: 
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Chapter 5. Constructing fuzzy rule bases with JFK 
 
5.1 General structure of JFK 
Fuzzy logic is a poweful tool, yet it requires many operations. Thus, it is well suited to be 
automated on software tools. On this line of reasoning, Prof. Omar López has come up with a 
shell to build fuzzy rulebases on the Mamdani model. This tool is called Java Fuzzy Kit2, as it is 
written in the Java programming language. 
 
The general structure of JFK is as follows: 
 

 
 
                                                 
2 Omar López-Ortega, Java Fuzzy Kit (JFK): A shell to build fuzzy inference systems according to the generalized 
principle of extension; Expert Systems with Applications; vol. 34, p. 796 – 804, January 2008. 



 
The class diagram of JFK is presented next: 
 
 
 

 
 
 
 
We present an example in order to see the implementation of fuzzy rule bases. In the example 
we wish to calculate students’s final grades according to three variables: Number of assistances 
in class, number of completed and correct homeworks, and final project. 
 
 



5.2 Modelling a fuzzy rule base 
 
The model is presented next: 
 
 
 

 
 
 
An excerpt of the rule base is given in the following lines: 
 
Rule1: IF asist is LOW AND hw is NONE AND project is BAD THEN grade is FAIL 
Rule2: IF asist is REG AND hm is SOME AND project is SO-SO THEN grade is PASS 
Rule3: IF asist is HIGH AND hm is all AND project is SO-SO THEN grade is A-
EXCELLENT 
Rule4: IF asist is HIGH AND hm is ALL and project is GOOD THEN grade is 
EXCELLENT 
 
 
5.3 Usage of JFK1.0 
 
The entire rule base, codified on JFK is presented in the following source code: 
 
 
1. Imports and Declaration of JFK variables 
 
import mx.edu.uaeh.jfk.BaseReglasMamdani; 
import mx.edu.uaeh.jfk.VariableMamdani; 
import mx.edu.uaeh.jfk.funciones.*; 
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public BaseReglasMamdani brmGrades;// 
public VariableMamdani asist; //asistencies 
public VariableMamdani homework;// 
public VariableMamdani project;// 
public VariableMamdani grade;// 
 
 
2. An Instance of BaseReglasMamdani is constructed: 
 
brmGrades = new BaseReglasMamdani("Grades"); 
 
3. Each variable is declared 
 
asist = new VariableMamdani("asist", 1, 32);//UoD asist 
//method agregarClausula is employed 
asist.agregarClausula(new Trapezoidal(1, 1, 8, 16), "low"); 
asist.agregarClausula(new Triangular(8, 16, 24), "reg"); 
asist.agregarClausula(new Trapezoidal(16, 24, 32, 32),"high"); 
 
4. Variables are added to the rule-base 
 
brmGrades.setVariables(asist, homework, project, grade); 
 
5. Rules are constructed 
brmGrades.agregarRegla("low none bad fail"); 
brmGrades.agregarRegla("low none so-so fail"); 
brmGrades.agregarRegla("low none good pass"); 
 
brmGrades.agregarRegla("low some bad fail"); 
brmGrades.agregarRegla("low some so-so pass"); 
brmGrades.agregarRegla("low some good pass"); 
 
brmGrades.agregarRegla("low all bad fail"); 
brmGrades.agregarRegla("low all so-so pass"); 
brmGrades.agregarRegla("low all good pass"); 
 
brmGrades.agregarRegla("reg none bad fail"); 
brmGrades.agregarRegla("reg none so-so fail"); 
brmGrades.agregarRegla("reg none good pass"); 
 
brmGrades.agregarRegla("reg some bad fail"); 
brmGrades.agregarRegla("reg some so-so pass"); 
brmGrades.agregarRegla("reg some good pass"); 
 
brmGrades.agregarRegla("reg all bad pass"); 
brmGrades.agregarRegla("reg all so-so pass"); 
brmGrades.agregarRegla("reg all good pass"); 
 
brmGrades.agregarRegla("high none bad fail"); 
brmGrades.agregarRegla("high none so-so pass"); 
brmGrades.agregarRegla("high none good pass"); 
brmGrades.agregarRegla("high some bad pass"); 
brmGrades.agregarRegla("high some so-so pass"); 
brmGrades.agregarRegla("high some good pass"); 
 



brmGrades.agregarRegla("high all bad pass"); 
brmGrades.agregarRegla("high all so-so almost-excellent"); 
brmGrades.agregarRegla("high all good excellent"); 
 
5. Result is catched 
double res = 0; 
res = brmGrades.getResultadoNew(); 
 
 
5.4 A Java example 
 
The following screen-shots show an application running on JFK. 
 

 
 
 



 
 
The GUI is intended so a given user enters the values for the referred variables, and JFK 
performs the calculation to obtain a final grade. 
 
Examples like this are many, but it suffices for the purposes of this technical report. 
 



 

Conclusions 
 
 
 
Fuzzy logic is a powerful tool to compute complex relations among variables ocurring in the 
real world. Even more so, the mathematical procedures and algorithms are not thought to be 
solved hands-on-paper but by using programming languages. In this sense, Fuzzy Logic is of 
great use to those interested in modelling and solve complex systems. 
 
The present technical report is intended to provide explanations about the foundations of fuzzy 
logic. Also, it explains how to use a tool called JFK where fuzzy rule bases are constructed. 
 
Topics ranging from membership functions, operations on fuzzy sets, triangular norms and co-
norms, cartesian product, fuzzy composition, are the set of core mathematical background 
needed to understand the “logic” part of “fuzzy” systems. 
 
The Generalized Modus Ponens was also covered. It is the link between maths and logic. Soon 
after, fuzzy rule bases are easy to grasp. With JFK, implementation is carried fluently. 
 
 


