J Intell Manuf
DOI 10.1007/s10845-008-0119-z

Intelligent and collaborative Multi-Agent System to generate

and schedule production orders

Omar Lépez-Ortega -
Israel Villar-Medina

Virgilio Lopez-Morales -

© Springer Science+Business Media, LLC 2008

Abstract The authors present a Multi-Agent System for
constructing and releasing production orders. In a manufac-
turing enterprise, the generation of production orders con-
sists in a set of coordinated tasks among departments. This
has been achieved traditionally as a module of the Production
Activity Control (PAC) system. However, classic PAC mod-
ules lack collaborative techniques and intelligent behaviour.
Moreover, in real-life situations experienced planners take
over traditional PAC systems, since the range of possibilities
to actually build production orders increases exponentially.
To contribute to production planning, we present an intelli-
gent and collaborative Multi-Agent System (MAS), having
coordinated two forms to emulate intelligence. The learn-
ing capability is achieved by means of a Feed-forward Arti-
ficial Neural Network (FANN) with the back-propagation
algorithm. The FANN is embedded within a machine agent
whose objective is to obtain the appropriate machine in order
to comply with requirements coming from the sales depart-
ment. Also, an expert system is provided to a fool agent,
which in turn is in charge of inferring the right tooling. The
MAS also consists of a coordinator and a spy. The coor-
dinator agent has the responsibility to control the flow of
messages among the agents, whereas the spy agent is con-
stantly reading the Enterprise Information System. Finally, a
scheduler agent schedules the production orders. The resul-

0. Lopez-Ortega (B<)) - V. Lépez-Morales - 1. Villar-Medina
Centro de Investigacion en Tecnologias de Informacién y Sistemas,
Instituto de Ciencias Bdsicas e Ingenieria, Universidad Auténoma
del Estado de Hidalgo, Carretera Pachuca—Tulancingo km. 4.5,
Pachuca Hidalgo, México

e-mail: lopezo @uaeh.reduach.mx; olopez27 @prodigy.net.mx

V. Lopez-Morales

e-mail: virgilio@uaeh.edu.mx

I. Villar-Medina

e-mail: villar_israel @yahoo.com

tant MAS improves the current form to plan production in a
factory dedicated to produce labels.

Keywords Multi-Agent Systems - Production Planning -
Neural Networks - Expert Systems - Supervised learning

Introduction

Collaboration in the manufacturing field occurs constantly.
Fine examples are found not only in the supply chain (Julka
et al. 2002), but also in the events and actions within a
manufacturing company, which force enterprises to adjust
manufacturing systems and comply with dynamic markets.
Manufacturing systems are understood as a structured com-
position of software and hardware, aimed at organizing, plan-
ning and executing activities in order to produce the required
value-added item. In this setting, software applications are
grounded on diverse philosophies to facilitate collaboration.

The most common approach to support collaboration is
the MRP and its extensions to the supply chain. MRP incor-
porates a module known as the Production Activity Control
(PAC), which is paramount because it is a force that unites
planning and manufacturing (Browne et al. 1992). This union
is materialized by the construction of production orders, pro-
viding information regarding the machine and tools to be
employed. However, as clients’ orders tend to be far from
homogeneous, the information system supporting the PAC
module is mostly unfit to deal with the exponential num-
ber of combinations to generate the right production order.
Therefore, the PAC module must be upgraded with software
that reflects collaboration and incorporates flexible ways to
generate a production order.

Arguably, the Multi-Agent System (MAS) has emerged as
the major swift in the supporting systems for manufacturing.

@ Springer

J Intell Manuf

Moreover, the addition of capabilities to emulate
intelligence in agents is no longer an aspiration but a real-
ity. For instance, it is possible to create agents with Expert
Systems as presented in Lopez-Ortega and Lépez-Morales
(2006). However, some other topics regarding cognitive abil-
ities are left to be explored. Discussion on Artificial Intelli-
gence (Al) has been focused on algorithms that mirror the
supervised learning process. This is achieved primarily
through Feed-forward Artificial Neural Networks (FANN),
with the backpropagation algorithm. Even though this tech-
nique provides flexible ways of making inferences, it has not
been widely exploited in Multi-Agent Systems to make Pro-
duction Planning more flexible. Consequently, modelling and
implementing a MAS that employs co-ordinately learning
and decision making capabilities, becomes a great challenge
to provide flexible mechanisms to cope with changing mar-
ket conditions, and accordingly accommodate a production
order. Thus, the main contribution we present in this paper
is the design and implementation of a collaborative Multi-
Agent System to improve Production Planning. To elaborate
on the Multi-Agent System, this article is organized as it is
explained next. A brief analysis of the related work is pre-
sented in the second section. The study case is divided into
two sections. Third section contains the case study descrip-
tion and the transition to an MAS, while fourth section “The
case study—part 2: the MAS illustrated” illustrates the actual
execution of MAS by employing data from a real situation.
Next, a discussion on the scheduling problem as a neces-
sary step to achieve production control is presented in fifth
section “Scheduling and closed-loop PAC”. Finally, the con-
clusions of the project are drawn. We do not include theoret-
ical insights on neither Expert Systems nor Artificial Neural
Networks, but interested readers might consult Russel and
Norvig (2002) and Jang et al. (1997).

Related work

We observe a solid trend to incorporate agent technology in
order to resemble the collaborative nature of manufacturing
systems. Marik and Lazansky (2007) coined the dramatic term
agentification of manufacturing systems to summarize this
trend. More explicitly, agenttechnology has beenimplemented
tohelp communicate dataamong supporting applications, such
as CAD or CAPP. An example is shown by Feng (2005), who
created an MAS to improve collaboration between design and
manufacturing departments. Kornienko et al. (2004) presents
a MAS aimed at optimizing resource assignments by analyz-
ing process plans. Onasimilarapproach, Wang and Shen (2003)
tackles the process planning problem, and extends the results
to the scheduling problem (Wang et al. 2006), in an effort to
optimize decisions before manufacturing execution actually
takes place. In Lopez-Ortega and Lépez-Morales (2006), a

@ Springer

semantic network is modelled as a necessary step to provide
intelligence to a MAS dedicated to process planning. We fur-
ther employed such findings to determine a rule-based sys-
tem to create intelligent agents that decide which machines
and tools adhere to a process plan (Lopez-Ortega and Lopez-
Morales 2006). Similarly, in Feng et al. (2005a) a rule-based
system is provided to agents to plan manufacturing processes.
Itcanbeargued thatcollaborationisfacilitated by adding intel-
ligence to agents.

An activity characterized by intense collaboration, which
can be improved by using Al techniques and agent-based
systems, is that of enterprise resource planning. Frey et al.
(2003) implements an MAS to calculate the lot size, the oper-
ations to be performed, and the time-span between jobs. The
information is fed to a simulator, which determines alter-
native courses of action before the production is initiated.
Ostensibly, collaboration between different software appli-
cations seems to be more suitable with the Multi-Agent Sys-
tem approach.

Regarding collaboration between individual firms, sev-
eral Multi-Agent Systems have been implemented. In Syme-
onidis et al. (2003), a Multi-Agent System includes data
mining techniques to set up the profile of resources in a sup-
ply chain. The proposed MAS takes advantage of the infor-
mation already stored in a commercial Enterprise Resource
Planning (ERP) system. Julka et al. (2002) reports a MAS
whose objective is to minimize stocks along a supply chain.
In Lea et al. (2005), an MAS is used to integrate three stand-
alone ERP modules. The Multi-Agent System consists of the
following agents: coordinator, task, data and GUI. Both the
task agent and the coordinator agent make partial decisions
in order to simplify the resource planning process. Although
the evidence of agent technology to boost enterprise collab-
oration is vaster than our brief review, we can draw some
partial conclusions.

The incorporation of agent technology is based on the
exploitation of existing applications and the ability to include
intelligence. Rather than promoting the entire substitution of
commercial applications, it is important to notice that agent
technology might act in the backstage, helping to commu-
nicate results among different software systems. Also, with
the advent of agent technology, the inclusion of algorithms
to emulate intelligence is a way to provide flexible software
systems. In this sense, rule-based systems are the main Al
technique that has been added to software agents. Although
the related research found in literature is highly valuable,
this present paper pioneers on how to incorporate supervised
learning in software agents to deal with complex decisions
in a manufacturing environment. This paper also illustrates
a realistic MAS, in which two different Al techniques are
employed coordinately to accomplish production plans. The
design and implementation of the Multi-Agent System we
created serve to break boundaries within a manufacturing

J Intell Manuf

enterprise, thus enhancing collaboration among the following
departments: sales, production planning and manufacturing.

The case study—part 1: agentification of production
planning

The environment is a factory dedicated to manufacture labels.
Labels are used almost everywhere: On bottled products such
as wine or sodas, candies, jeans, bar-coding, CD’s, etc. They
provide information about a given product. Consequently,
their demand in the market place is high, yet prone to changes.
Minor variations in size, colors, or raw material impact on the
entire manufacturing system. Few companies have the capac-
ity and expertise to produce them, and those that manufac-
ture labels face tremendous production planning problems,
because systems based on the MRP approach are simply not
suitable to handle such complexity.

The typical flow of data in our case study is presented in
Fig. 1. The labels are produced according to clients’ require-
ments. An external application is used by the sales depart-
ment to input clients’ data, such as label design, color,
dimensions, material and specific attributes. These data are
stored in the Enterprise Information System (EIS). Once
the client’s order is processed by the sales department, the
production planning department must elaborate a produc-
tion order, on which the information to produce the label
is comprised. The production order must be accurate and
error-free so that the manufacturing department can perform
adequately.

Fig. 1 The current situation
SALES DEPARTMENT

The possible combinations to produce a label are numer-
ous. For example, the following raw material can be
employed: glued-paper, non-glued paper, several types of
cloth, plastic, cardboard, to name but only a few. Moreover,
the raw material type determines how to acquire it, which
can be in the form of continuous cylinders or in batches (also
called master). Another complexity arises when a client sets
the colors to be used (i.e. blue letters on white, glued-paper).
Thus, the combination of tints is fixed according to the client
requirements. The production planning manager must estab-
lish what operations (SU1, SU2 and SU3) are to be executed
to comply with the client’s required design of the label. On
such information, the manager must determine the number of
tools (up to three). Once these pieces of data are available, the
production planning manager must provide the right machine
(out of three options) on which the label will be produced.
The machine depends on the following variables: raw mate-
rial family, number of tints, resolution (dots per inch), type
of finishing, and number of tools. This creates great diffi-
culty to construct consistent production orders. Normally,
the production planning manager relies on his/her experi-
ence; however, production orders normally contain impre-
cise data, as the manager shows inconsistent behavior about
his/her decisions. The production manager either assigns the
wrong number of tools for a given machine, or launches a pro-
duction order for a machine that is not suitable to deal with a
specific design requirement. This situation might occur due
to fatigue, or the inability of a human-being to manage larger
number of combinations. Therefore, the process of

PRODUCTION PLANNING DEPARTMENT

@ operations

%ll

product product
description

CLIENT'S
ORDER

RAW MATERIAL
PURCHASE ORDER

PURCHASE DEPARTMENT

quantity

l(SU1 , SU2 SU3:)
X

number number
of tints of tools

| l

raw type of
material

type

®

resolution

finishing

machine

scheduler @

ENTERPRISE
INFORMATION
SYSTEM

PRODUCTION ORDER

MANUFACTURING DEPARTMENT

@ Springer

J Intell Manuf

Fig. 2 General design of the
Multi-Agent System

SALES DEPARTMENT

TOOL
AGENT

<operations (SU1, SU2 SU3:),

@ raw material,

AT

product product
presentation description

CLIENT'S
ORDER

quantity

<raw material,number of tints, resolution, finishing|type, lenght, width>

l lenght, width>

<raw material family, purchase type, refile,
number of tools>

MACHINE
AGENT

®

<raw material family, number of tints, resolution, finishing type, number of tools>
(

@ <machine>

COORDINATOR
AGENT

Q)

<production

<scheduled production
order>

RAW MATERIAL /

PURCHASE ORDER

&

generating a production order must be automised, employing
a flexible and robust approach.

Transition to a collaborative and intelligent system

The Multi-Agent System is a proposal to increase the quality
of generating and releasing production orders. Our solution
is to decompose the decision process carried by the human
manager in a series of tasks performed by software agents
(Fig.2). These tasks are:

1. To read the EIS for newly created sales orders, and to
acquire relevant variables.

2. To determine all the necessary tooling information.

3. To determine the correct machine.

4. To establish a sequence for launching production orders
to the manufacturing department.

5. To maintain data consistency and robustness along the
process.

The primary goal of the MAS is to construct a production
order. In the design we propose a coordinator agent, which
is responsible for maintaining data consistency along the pro-
cess by controlling the flow of messages among the agents. A
spy agent must read the EIS in order to acquire client’s orders,
and send the information to the coordinator. Two individual
agents are in charge of making decisions regarding tools and
machines. A machine agent obtains the appropriate machine,
whereas the tool agent is responsible for providing the right
tooling. As soon as the machine, tools and other data are

@ Springer

ENTERPRISE
INFORMATION
SYSTEM SCHEDULER
AGENT

established, a priority is assigned to the production order.
To do so, we include a scheduler agent. When the produc-
tion order gets the priority, it is then launched to the man-
ufacturing department. Given the particular features of the
planning problem at hand, we faced the dilemma of select-
ing algorithms so that each intelligent agent obtains valid
conclusions.

For an agent to settle the number of tools to be used dur-
ing production of the label, it was possible to model the man-
ager’s knowledge in the form of explicit rules. Such rule-base
is also employed to delineate the raw material family and how
to purchase it. The rule-base contains knowledge to decide
on the right tooling. The fool agent is, therefore, an expert in
charge of exploiting the rule-based system and come up with
the mentioned pieces of information.

On the other hand, determination of the machine where the
label is to be produced is not straight forward. As it has been
stated before, the number of possibilities grows exponen-
tially. In this situation, it is obviously impractical to create
a rule-based system with thousands of rules, at the risk of
missing valid combinations, if the rule-base is incomplete.
Nonetheless, Artificial Neural Networks are known to be
good classifiers, so that an input pattern, which is likely to
be unknown, is mapped to a value that resides within one
of various output classes. For these reasons, the machine
agent possesses a FANN, which gives it the skill to find out
what machine fits best according to the actual combination
of input values. Yet, it was necessary to set up a training
matrix and employ a method of supervised learning. On the
following, we elaborate on both, the communication protocol

J Intell Manuf

Fig. 3 The communication
protocol

X

COORDINATOR AGENT

X

TOOL AGENT

inform <raw material>

confirm

inform <SU1, SU2, SU3>

confirm

inform <raw material family, purchase type, refile, number of

tools>

confirm

inform <raw material family, type of finishing, resolution, number of tints, number of tools>

X

MACHINE AGENT

confirm

inform <machine>

and the intelligent capabilities implemented to provide flex-
ible mechanisms of collaboration. Specific data for this case
study is provided in the fourth section “The case study—part
2: the MAS illustrated”.

The communication protocol

The MAS is globally coordinated by means of a commu-
nication protocol. In Fig.3 we present a simplified version
of the proposed model. The left side shows the protocol
between the coordinator and the tool agents. On the right
side, a similar model is used between the coordinator and
the machine agents. According to the AUML notation (Bauer
and Odell 2005), the solid arrows at the end of each message
represent synchronous exchanges. For the purpose of sim-
plicity, we show several contents in a single message, even
though this is not standard notation. Figure 3 does not illus-
trate the update of the Enterprise Information System, action
that is performed by the coordinator. The communication
between the coordinator and the machine agent is not initi-
ated until the tool agent informs what results it has achieved.
The entire communication process ends as soon as the coor-
dinator updates the value of the machine in the EIS. When
this occurs, the production order is on hold to be scheduled.
The actual message content that is uttered by both, the tool
agent and the machine agent, comes from the emulation of
intelligent behaviour.

The rule-base embedded in tool agent

The tool agent has to settle the number of tools, as soon as it
receives data from the coordinator. Although this is the main

task for the tool agent, we obtain intermediate data while the
inference process is taking place. The coordinator sends the
length and width of the label, as well as the material on which
the label is to be produced. The fool agent loads the received
values into the expert system, and initiates the forward chain-
ing of rules. The rule-base is programmed in a shell called
rule, as this shell proved effective in our previous work on
doting expert systems to agents (Lopez-Ortega and Lopez-
Morales 2006). Specifically, the expert system embedded in
the fool agent obtains the number of tools, based on the values
of SU1, SU2 and SU3. This is exemplified by the following
excerpt.

ruleTl: IF SUl != ““none”” AND SU2 !=
““none”” AND SU3 != ““none””

THEN number_tools = 3

ruleT2: IF SUl = ““none”” AND SU2 =
““none”” AND SU3 = “none”

THEN number_tools = 1

ruleT3: IF SUl != “none” AND SU2 =
“none” AND SU3:- = “none”

THEN number_tools = 1
ruleT4: IF SUl = “none” AND SU2 !

“‘none” AND SU3 = “none”

THEN number_tools = 1

ruleT5: IF SUl = “none” AND SU2 =
“‘none” AND SU3 != “none”

THEN number_tools = 1

ruleT6: IF SUl != “none” AND SU2 ! =
“‘none” AND SU3 = “none”

THEN number_tools = 2

@ Springer

J Intell Manuf

ruleT7: IF SUl != “none” AND SU2 =
“‘none” AND SU3 != “none”

THEN number_tools = 2

ruleT8: IF SUl = “none” AND SU2 ! =
“‘none” AND SU3 != “none”

THEN number_tools = 2

Based on the raw material, the tool agent determines the raw
material family. Some rules read:

ruleRMF01l: IF RAW_MATERIAL=
“kimno” THEN RAW_MATERIAL_FAMILY =
“kimdura”

ruleRMF02: IF RAW MATERIAL=
“kimsi” THEN RAW_MATERIAL_FAMILY =
“kimdura”

ruleRMF03: IF RAW MATERIAL=
“kimte” THEN RAW_MATERIAL_FAMILY=
“kimdura”

ruleRMF04: IF RAW_MATERIAL=
“valer” THEN RAW_MATERIAL_FAMILY =
“fabric”

ruleRMFO05: IF RAW MATERIAL=
“poliester” THEN RAW_MATERIAL_FAMILY =
“fabric”

ruleRMF06: IF RAW MATERIAL=
“‘nylon” THEN RAW_MATERIAL_FAMILY =
“fabric”

ruleRMF07: IF RAW_MATERIAL=
“auttr” THEN RAW_MATERIAL_FAMILY =
“paper”

ruleRMF08: IF RAW _MATERIAL=
“orono” THEN RAW_MATERIAL_FAMILY=
“paper”

ruleRMF09: IF RAW MATERIAL=
“oroag” THEN RAW_MATERIAL_FAMILY =
“paper”

ruleRMF10: IF RAW_MATERIAL=
“cartd” THEN RAW_MATERIAL_FAMILY =
“cardboard”

ruleRMF11l: IF RAW_MATERIAL=
“carts” THEN RAW_MATERIAL_FAMILY =
“cardboard”

Then, the type of purchase is set according to the information
gathered by the fool agent. Should raw material be purchased
on continuous cylinders or on batches, it all depends on the
raw material family. An excerpt of the rules to decide what
type of purchase follows here:

ruleTOPl: IF RAW_MATERIAL_FAMILY =
“fabric” AND RAW_MATERIAL != “nylon”

@ Springer

THEN TYPE_OF_PURCHSE = “master”

ruleTOP2: IF RAW_MATERIAL_FAMILY =

“fabric” AND RAW_MATERIAL = “nylon”

THEN TYPE-OF_PURCHASE =
cylinder”

“continuous

ruleTOP3: IF RAW_MATERIAL_ FAMILY =
“cardboard” AND RAW_MATERIAL ! =
“cartd”

THEN TYPE_OF_PURCHASE = “master”

ruleTOP4:
“cardboard”
“cartd”

IF RAW_MATERIAL_FAMILY =
AND RAW_MATERIAL =

THEN TYPE_OF_PURCHASE = “continuous

cylinder”

ruleTOP5: IF RAW_MATERIAL_FAMILY =

“kimdura”
THEN TYPE_OF_ PURCHASE = “master”

ruleTOP6: IF RAW_MATERIAL_ FAMILY =
“various”

THEN TYPE_OF_PURCHASE = “master”

ruleTOP7:
\\paper n

IF RAW_MATERIAL_FAMILY =

AND RAW_MATERIAL != “dual”
THEN TYPE_OF_PURCHASE = “master”

ruleTOP8:
spaper”

IF RAW_MATERIAL_FAMILY =
AND RAW_MATERIAL = “dual”

THEN TYPE_OF_PURCHASE =
“continuous_cylinder”

The tool agent informs the coordinator about its conclusions.
The coordinator, having received the information, initiates
communication with the machine agent. The machine agent
employs a FANN to obtain authoritatively the machine where
the label should be produced.

Implementation of the FANN

We provide in this section details of the Feed-forward net-
work to determine the right machine. This depends on the
combination of six different data sets, as follows:

raw_material_family X tints X resolution X
finish_type X number_tools— > machine
We capitalize on the power of Artificial Neural Networks in

order to solve this combinatorial problem. The architecture
chosen for the Artificial Neural Network is called

J Intell Manuf

Fig. 4 Module to define the

training matrix

Crear Matriz

Agrega Reglistro

feedforward, since the input values are transmitted along the
layers of the net, until the output layer is reached. This type
of net is trained by using the backpropagation of the error sig-
nal. This method is based on the gradient descent technique,
so that the error value diminishes as the gradient of a given
function i.e the logistic function, is calculated (Jang et al.
1997). In each training pass, the weights are updated. The
training phase is complete once the error value is less than
a given target value. When this occurs, the resultant weights
are stored. They are later employed by the net to fix an output
value, should an unknown input pattern arrive.

Although there are countless simulators of neural net-
works, none of them are suited to be used by a Multi-Agent
System. Hence, it was necessary to incorporate supervised
learning in the machine agent by means of Java program-
ming. To comply rightly with the requirements to
implement backpropagation, anumber of technological inno-
vations were carried out, adapting the work of Bigus and
Bigus (2002) on Java coding of backpropagation. Thus, we
created software to facilitate the implementation of the FANN:

e A module to define the training matrix, with different
types of input values (Fig.4).
A module to track the error value.

e A module to acquire and store weights, once the training
phase is over.

e A module to incorporate the resultant FANN into the
machine agent.

The formal representation of the software modules to train
and execute the FANN is presented in Fig.5. The class dia-
gram shows that the machine agent is implemented on the
JADE platform. This agent incorporates a neural network by

i6n del Conoc

mpresiones?| resoluclon? | acabados?
o o F
0 280

280

360

360

400

400

1400

700

700

[Minguna
Ninguno
Minguno
Minguno

jade - - - -
'fj ‘ setNetConfiguration ‘ ‘ getNetConfiguration
neuron neuro
neuron
machine_agent } neuron } 0 } weights ‘
message dataset testNet

encoder @ dataset | BackProp

Fig. 5 Class diagram for the tool agent

instantiating the neuron class. To use effectively the back-
propagation algorithm, symbols (actual values for the input
and output of the net) must be encoded-decoded into a num-
ber in the interval [0,1]. This process is done via the
encoder class. The neuron class in turn uses and deter-
mines the configuration of the net. The weights class is
used to create and read the files “pesos.dat” where the resul-
tant weight vector resides. The BackProp class possesses
the necessary coding to compute the backpropagation algo-
rithm.

The next step consisted in training the FANN. This was
done by constructing a training matrix, which is a subset suf-
ficiently representative of the entire range of possibilities to
set a machine. Nonetheless, it was not a trivial task to obtain
the most appropriate training matrix (with some of the train-
ing combinations the FANN stopped at a saddle point, or a
local minimum). It was not after several tries, supervised by
the production manager, that we could come up with a fiable
training set. The training matrix is presented in Fig. 6.

@ Springer

J Intell Manuf

Fig. 6 Training Matrix for the

ANN INPUTS OUTPUT
RAW MATERIAL NUMBER RES FINISH NUMBER OF MACHINE
FAMILY OF TINTS (DPI) TYPE TOOLS
FABRIC 0 0 NONE 1 830
FABRIC 0 280 NONE 1 830
FABRIC 1 280 NONE 1 830
FABRIC 2 360 NONE 1 830
FABRIC 3 360 NONE 1 830
FABRIC 3 400 LAMINATED 1 2200
FABRIC 3 400 LAMINATED 2 NILPETER
FABRIC 3 400 LAMINATED 2 NILPETER
FABRIC 4 700 NONE 2 2200
FABRIC 4 700 NONE 2 2200
FABRIC 4 700 NONE 2 2200
FABRIC 7 800 LAMINATED 2 NILPETER
FABRIC 7 800 NONE 2 NILPETER
FABRIC 7 800 NONE 1 NILPETER
CARDBOARD 0 280 NONE 1 830
CARDBOARD 1 360 NONE 1 830
CARDBOARD 3 360 NONE 1 830
CARDBOARD 4 500 LAMINATED 1 2200
CARDBOARD 4 360 NONE 1 2200
CARDBOARD 5 600 LAMINATED 1 2200
CARDBOARD 6 700 NONE 2 NILPETER
CARDBOARD 5 800 NONE 3 NILPETER
CARDBOARD 6 700 LAMINATED 2 NILPETER
CARDBOARD 5 800 LAMINATED 2 NILPETER
KIMDURA 0 360 NONE 1 2200
KIMDURA 1 400 LAMINATED 1 2200
KIMDURA 1 400 LAMINATED 2 2200
KIMDURA 1 400 LAMINATED 1 2200
KIMDURA 5 360 NONE 1 NILPETER
KIMDURA 6 360 NONE 1 NILPETER
BOPP 0 280 NONE 1 830
BOPP 1 360 LAMINATED 1 830
BOPP 3 400 NONE 1 2200
BOPP 3 400 LAMINATED 1 2200
BOPP 5 500 NONE 1 2200
BOPP 6 700 NONE 1 2200
BOPP 7 800 NONE 2 NILPETER
PAPER 0 280 NONE 1 830
PAPER 0 280 NONE 1 830
PAPER 1 360 NONE 1 830
PAPER 2 360 NONE 1 830
PAPER 3 500 NONE 1 2200
PAPER 3 600 SULFATED 1 2200
PAPER 3 700 LAMINATED 2 2200
PAPER 3 600 LAMINATED 2 2200
PAPER 6 360 LAMINATED 1 NILPETER
PAPER 5 700 NONE 2 NILPETER
PAPER 6 800 NONE 3 NILPETER
OTHER 0 0 NONE 1 2200
OTHER 4 500 NONE 3 NILPETER

The actual configuration of the FANN is closely bound to
the training matrix. Specifically, one processing unit is cre-
ated for each value contained in the training set. For example,
as Input 1 of the training matrix has six different values, six
processing units are built. These processing units belong to
the input layer of the net. Since Input 2 has six different val-
ues, then six processing units are also fixed in the input layer.
The training module we set up is helpful to fix the number
of processing units.

Once the processing units for the input layer are gener-
ated, then the intermediate layer is set. The module assigns
the same number of processing units in the input layer to the
intermediate layer. The Java code fixes only one intermediate
layer. A FANN with a single intermediate layer is powerful

@ Springer

enough to deal with non-linear problems. The output layer is
then constructed.

The number of processing units in the output layer depends
on the number of values that are provided as valid outcomes
in the training set. In our training matrix, the output layer is
given three different values, and three processing units are
constructed. The number of weights to link together the pro-
cessing units is the product of the resultant processing units.
Specifically, our net possesses 25%25%3 weights which must
be adjusted during the training phase and used during execu-
tion phase.

Thus, the FANN to be trained and further exploited con-
sists of 3 layers, 25 processing units in both, the input and
intermediate layers, and three processing units in the out-

J Intell Manuf

put layer. The error value during the training phase was
set at 0.004. Once the FANN descended below this value,
the training phase was completed, and the weights values
were stored in a binary file called “pesos.dat”. This file is
then used when the FANN is set in execution mode. The
execution of the FANN has given positive results. We per-
formed up to a hundred runs once the net was trained, and
in 97% of the cases the machine agent provided a reliable
result.

Itis utterly complex to implement intelligence and to coor-
dinate communication among agents. Extensive Java and
JADE code was either adapted or newly created to provide
the necessary intelligent capabilities. Also, the behaviours of
the agents were set up properly in order to avoid interferences
while the agents are exchanging information. Interested read-
ers may consult Bellifemine et al. (2007) for insights on how
to program agents on the JADE platform. In the following
section we present the results obtained for the entire Multi-
Agent-System.

The case study—part 2: the MAS illustrated

In this section, we illustrate the series of tasks and partial
decisions achieved by the software agents. We deliberately
use the command line to illustrate the entire process of mes-
sage exchange between the agents. The process starts as soon
as the sales department enters a client’s requirement. The spy
agent realizes that a new order has just entered the EIS, and
it sends a series of messages to the coordinator, informing
the values of the following variables:

Sales order: 594
Width: 112

Length: 1000

Raw material: NYLON
SU1: X007

su2: “”

SuU3: “”

number of tints: 0
resolution: 360

type of finishing: none

Figure 7a shows how the spy agent informs the coordinator
agent about the previous data, organized in the sales order
594. When the coordinator acknowledges reception of mes-
sages from the spy, then it informs the tool agent regarding
width, length, raw material, SU1, SU2 and SU3.

The tool agent assesses that it has enough data to initi-
ate its reasoning process (“Agente herramienta con
suficientes datos”), then it runs the expert system
and obtains a conclusion (Fig.7a, bottom). The following
rules are triggered according to the input data of the current
example:

ruleRMF06: IF RAW_MATERIAL = “nylon”
THEN RAW_MATERIAL_FAMILY = “fabric”
ruleTOP2: IF RAW_MATERIAL_FAMILY=
“fabric” AND RAW_MATERIAL = “nylon”
THEN TYPE_OF_PURCHSE = “continuous
cylinder”
IF SU1 !=“none” AND SU2 = “none”
AND SUS3 = “none” THEN number_tools = 1

Therefore, the fool agent reaches the next conclusion:

RAW MATERIAL FAMILY: Fabric

TYPE OF PURCHASE: Continuous cylinder
(rollo)

NUMBER OF TOOLS: 1

According to the communication protocol presented, the ool
agent informs the coordinator agent about its conclusions.
On the reception of messages from the tool agent, the coordi-
nator sends the following data to the machine agent
(Fig.7b—“1a cadena entrante es: TELAS 0 360
Ninguno 1”):

RAW MATERIAL FAMILY: Fabric
NUMBER OF TINTS: 0
RESOLUTION : 360

TYPE OF FINISHING: none
NUMBER OF TOOLS: 1

Based on this type of information, the FANN embedded
within the machine agent, which is set into execution mode,
obtains a valid machine, and sends a message to the coor-
dinator (“Agente coordinador recibi mensaje
MR = 830”). In this example, the obtained machine is known
as “830” (again, this is factory-specific terminology). Read-
ers are encouraged to compare the previous set of data with
the two highlighted records on the training matrix in Fig. 6.
On these two records the FANN was trained to establish the
machine value as “830”. In the example, the machine agent
approximates its decision to the closest value on which it
was trained, thus stating that machine “830” is the one to be
used. For this production order, the assigned priority is 205.
Figure 7c summarizes the results obtained by the MAS. The
entire process is repeated every time the spy agent reads a
new sales order in the EIA. As a result of such process, the
construction and release of a valid production order is fully
automised by the intelligent and collaborative system that we
developed.

Scheduling and closed-loop PAC

The purpose of the MAS is clear: constructing a produc-
tion order that integrates information to be employed during
manufacturing execution, i.e. machine type, number of tools,
tints. Data from sales department is passed top—bottom, and
then it is transformed into a production order that finally
reaches the manufacturing department. We can claim that

@ Springer

J Intell Manuf

wunannnnnnn TE

*
*
*
"
*
*
*
*
*
*
*
*
*
*
*
*
*
*
#
*
*
*
*
#

Lt

Fig. 7 Results obtained by the Multi-Agent System

production planning is improved by a collaborative and intel-
ligent system. However, should manufacturing execution be
more realistic, it is necessary to develop a solid scheduling
policy. Our scheduler agent employs a FIFO policy, even
though it is the simplest ordering/queueing mechanism. We
are assessing results given in Wang et al. (2006) as future
upgrades of the scheduler agent. We can asses that integrat-
ing planning and scheduling is not a trivial task, yet it opens
up opportunities to actually close the loop between produc-
tion planning and manufacturing execution. The current
configuration of the MAS that we developed enhances pro-
duction planning, yet production control is not fully covered.
Thus, a dynamic control policy (Paternina-Arboleda and Das
2005) might be obtained when relevant variables, such as
WIP inventory, backorder penalty cost, setup time and cost,
processing and transportation cost and time, or machine dis-
ruption time, are sent back to planning for achieving pro-
duction control. The loop is closed when events within the
manufacturing department, such as machine failure or a delay

@ Springer

HRERRRRR R
an

A MULTTAGENTE #0050 000000 000000 00 0 0
*

la ORDEN 594

in the setup time, are communicated in real-time to the plan-
ning department. Optimization can be achieved by using a
scheduling policy that benefits from realistic data. There-
fore, communication must be bidirectional, from production
planning to manufacturing execution and vice versa. We sug-
gest to design a hierarchy of agents, or a holarchy (Walter
et al. 20006), to accomplish agent-based PAC. Communica-
tion, intelligence, and the capability to integrate data from
external applications are key features that must be exploited
thoroughly. Achieving such necessary feedback is an oppor-
tunity to continue research in the field of agent-based manu-
facturing.

Conclusions

Based on theoretical and practical results, we think that Multi-
Agent Systems represent a major swift in supporting systems
for manufacturing. We contribute to agent-based production
planning by presenting a collaborative and intelligent MAS.

J Intell Manuf

Particularly, the cognitive function of learning is possible
by means of a feed-forward Artificial Neural Network with
the back-propagation algorithm, embedded within a machine
agent. We also employ another method to emulate intelli-
gence by using an Expert System, which has been embedded
in a fool agent. Collaboration is controlled by a coordina-
tor, whereas a spy is constantly reading the Enterprise Infor-
mation System in order to acquire client’s orders, and send
the information to the coordinator. Marik (op cit) acknowl-
edges the inclusion of agent technology on the production
planning level. The agentification process of the production
planning department, he claims, provides an elegant mecha-
nism for system integration, and supports the migration from
centralized planning towards distributed and flexible archi-
tectures. The MAS we developed contributes to achieve this.
To the best of the authors’ knowledge, this is the first report
on using rule-based systems and supervised learning coor-
dinately, as mechanisms to improve Production Planning.
Moreover, decisions obtained by individual agents reflect the
various steps that must be performed in different departments
in a real-life situation. We also point that existing applica-
tions are not required to be entirely substituted. Some of them
still provide valid data, so agent technology is appropriate to
process such data intelligently, and communicate with any
software residing elsewhere (i.e. in another enterprise). In
this sense, agent technology is mature enough to be fully
exploited in real-world applications, as our MAS illustrates.

References

Bauer, B., & Odell, J. (2005). UML 2.0 and agents: how to build agent-
based systems with the new UML standard. Engineering Applica-
tions of Artificial Intelligence, 18, 141-157.

Bellifemine, F. L., Caire, G., & Greenwood, D. (2007). Developing
Multi-Agent Systems with JADE. USA: Wiley and Sons.

Bigus, J., & Bigus, J. (2002). Constructing Intelligent Agents using Java
(2nd ed.). NY: Wiley and Sons.

Browne, J., Harhen, J., & Shivnan, J. (1992). Production Management
Systems. A CIM perspective. UK: Addison-Wesley.

Feng, S. C. (2005). Preliminary design and manufacturing planning
integration using web-based intelligent agents. Journal of Intelligent
Manufacturing, 16, 423-437.

Feng, S. C., Stouffer, K. A., & Jurrens, K. K. (2005a). Manufacturing
planning and predictive process model integration using software
agents. Advanced Engineering Informatics, 19, 135-142.

Frey, D., Nimis, J., Worn, H., & Lockemann, P. (2003). Benchmarking
and robust multi-agent production planning and control. Engineering
applications of Artificial Intelligence, 16, 307-320.

Jang, J.-S. R., Sun, C.-T., & Mizutani, E. (1997). Neuro-fuzzy and soft
computing. A computational approach to learning and machine intel-
ligence. USA: Prentice-Hall.

Julka, N., Srinivasan, R., & Karimi, I. (2002). Agent-base supply chain
management-1: framework. Computers and Chemical Engineering,
26, 1755-1769.

Kornienko, S., Kornienko, O., & Priese, J. (2004). Application of multi-
agent planning to the assignment problem. Computers in Industry,
54,273-290.

Lea, B. R., Gupta, M. C., & Yu, W. B. (2005). A prototype multi-agent
ERP system: an integrated architecture and a conceptual framework.
Technovation, 25, 433-441.

Lépez-Morales, V., & Lopez-Ortega, O. (2005). A distributed seman-
tic network model for a collaborative intelligent system. Journal of
Intelligent Manufacturing, 16, 515-525.

Lépez-Ortega, O., & Lépez-Morales, V. (2006). Cognitive communica-
tion in a multi-agent system for distributed process planning. Interna-
tional Journal of Computer Applications in Technology, 26, 99-107.

Marik, V., & Lazansky, J. (2007). Industrial applications of agent tech-
nologies. Control Engineering Practice, 15(11), 1364—1380.

Paternina-Arboleda, C. D., & Das, T. K. (2005). A multi-agent rein-
forcement learning approach to obtaining dynamic control policies
for stochastic lot scheduling problems. Simulation Modelling Prac-
tice and Theory, 13, 389-406.

Russel, S. J., & Norvig, P. (2002). Artificial intelligence: A modern
approach (2nd ed.). USA: Prentice-Hall.

Symeonidis, A. L., Kehagias, D., & Mitkas, P. (2003). Intelligent pol-
icy recommendations on enterprise resource planning by the use of
agent technology and data mining techniques. Expert Systems with
Applications, 25, 589-602.

Walter, S. S., Brennan, R. W., & Norrie, D. H. (2006). Experience and
reflection on the development of a holonic job-shop scheduling sys-
tem. International Journal of Computer Applications in Technology,
26, 15-217.

Wang, L., & Shen, W. (2003). DPP: An agent-based approach for dis-
tributed process planning. Journal of Intelligent Manufacturing, 14,
429-439.

Wang, L., Shen, W., & Hao, Q. (2006). An overview of distributed
process planning and its integration with scheduling. International
Journal of Computer Applications in Technology, 26, 3—14.

@ Springer

	Intelligent and collaborative Multi-Agent System to generateand schedule production orders
	Abstract
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

