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Abstract. An asymptotic analysis of a layered structure with an imperfect interface subject to an anti-plane shear
deformation and non-homogeneous Dirichlet end conditions is presented in this paper. Two layers of isotropic
materials are bonded via a middle interface layer (adhesive joint), which is thin and soft; effectively, this can
be described as a discontinuity surface for the displacement. Model fields are constructed to compensate for the
error produced by the asymptotic solution for the case when the layered structure is subject to non-homogeneous
Dirichlet end conditions. Numerical examples and analytical estimates are presented to illustrate the slow decay
of the ‘boundary-layer’ fields.
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1. Introduction

Substantial progress has been made to date towards characterising the effects of imperfect
interfaces for layered structures. We would like to cite papers [1, 2] on the modelling of heat-
conduction problems and problems of electromagnetism for laminated composites, the work
[3] on the study of anisotropic beams and papers [4, 5] presenting models of imperfect inter-
faces in conduction phenomena for composite structures. The papers [6, 7] discuss asymptotic
models of dilute composites with imperfect interfaces and analysis of fields within a layer
bonded to a substrate. Articles [8, 9] present analyses of Saint-Venant principles and develop-
ments involving nonlinear problems; end effects for problems of anti-plane shear deformation
of sandwich structures are studied in [10, 11]. The Saint-Venant torsion of composite bars
containing imperfect interfaces was analysed in [12] and [13] and particular attention was
given to the end effects associated with certain boundary conditions.

Asymptotic analysis of thin and soft adhesive joints was presented in [14] and a further
extension for orthotropic highly inhomogeneous layered structures was given in [15]. An
overview of asymptotic methods used for analysis of imperfect interfaces can be found in
[16].

This paper is organised as follows. In Section 2 we introduce the geometry of an isotropic
highly inhomogeneous layered structure (it is a thin composite beam). It consists of an upper
layer of thickness εh1 and shear modulus µ1 bonded via a thin and soft interface layer to
a lower layer of thickness εh2 and shear modulus µ2, where ε � 1 is a non-dimensional
positive parameter (see Figure 1).
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Figure 1. The two-dimensional thin region �ε.

The middle layer acting like an adhesive between the adherents is thinner and has thickness
ε2h0, where h0 is comparable with the thickness parameters h1 and h2 characterising the upper
and lower layers. It is assumed that this interface is softer than the exterior layers: its shear
modulus is defined as µ0 = ε3µ, where µ has the same order of magnitude as µ1 and µ2. In
this case of special interest, it can be shown that the displacement jump across the interface
is not small (it is of order O(1)), whereas for the same value of the interface thickness in the
cases µ0 = εµ and µ0 = ε2µ the displacement jump would be of order O(ε2) and O(ε),
respectively.

In Section 3 we give the governing equations and boundary/interface conditions that de-
scribe the compound beam subject to an anti-plane shear load.

Following the idea introduced in [14], in Section 4 we study a model problem characterised
by the following approximation for the displacement field u(i) = (0, 0, w(i)(x1, x2)), i =
0, 1, 2

w(i)(x) ∼ W(i,0)(x1, ti)+ εW(i,1)(x1, ti)+ ε2W(i,2)(x1, ti), (1.1)

where ti denotes a set of stretched variables (they are defined in Section 2), and the functions
W(1,0)(x1),W

(2,0)(x1) satisfy the following second-order differential equations

∂2
1W

(1,0)(x1) = µ

µ1h0h1

{
W(1,0)(x1)−W(2,0)(x1)

}− p(1)(x1)

h1
,

∂2
1W

(2,0)(x1) = − µ

µ2h0h2

{
W(1,0)(x1)−W(2,0)(x1)

}+ p(2)(x1)

h2
.

It is important to remark thatW(1,0) andW(2,0) do not depend upon t1 and t2, respectively. The
functions p(1)(x1) and p(2)(x1) correspond to tractions on the top and on the bottom surfaces
of the layered structure (see relationship (3.2)).

For the sake of simplicity we assume that a non-homogeneous Dirichlet boundary condi-
tion is applied at the left end of the thin composite beam, whereas the right end of the beam is
clamped (homogeneous Dirichlet condition). In Section 5 we present further analysis of fields
near the ends of the adhesive joint and derive the boundary conditions for the leading-order
terms of (1.1).

In contrast with the well-known Saint-Venant theory where the end effects decay expo-
nentially fast, for the displacement jump across the imperfect interface we have a slow decay.
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In particular, when the upper and lower layers are made of the same material, with the shear
modulus µ∗ and the same thickness εh∗, the perturbation associated with the ends of the beam
decays like exp(− γ

h∗x), x > 0,

γ

h∗ ∼ ε

h∗

(
2µh∗

µ∗h0

)1/2

. (1.2)

We note the presence of the small parameter ε in formula (1.2). Hence, this predicts a slow
decay rate in comparison with the well-known behaviour for a homogeneous beam.

In Section 6 we construct the following asymptotic approximation

w(i) ∼ W(i,0)(x1, ti)+ εW(i,1)(x1, ti)+ ε2W(i,2)(x1, ti)

+V (i)− (ξ1, ti)+ V (i)+ (ξ1, ti), i = 0, 1, 2.
(1.3)

The functions V (i)± (ξ1, ti) (here ξ1 is the scaled distance along the interface) compensate for the
error near the edges of the layered structure with an adhesive joint, when non-zero Dirichlet
conditions are prescribed at the ends of the beam.

Finally, in Section 7 we give model numerical examples that illustrate the end effects
described in this paper.

2. The geometry of the sandwich beam

In this Section we define the geometry of a two-dimensional isotropic thin layered structure
with an adhesive joint; this description is similar to [15]. The formulation of the problem
includes two small parameters: one representing the thickness of the structure and the other
corresponding to the relative softness of the adhesive. It has been shown in [14] that different
relations between these parameters lead to different lower-dimensional models for the layered
structure. This is qualitatively different compared to the case of a laminated structure with
perfect bonding.

Let us consider a thin rectangular domain which consists of three layers as shown in
Figure 1. Here

�1 = {x ∈ R
2 : |x1| < l , ε(h/2 − h1)+ ε2h0 < x2 < εh/2 + ε2h0},

�2 = {x ∈ R
2 : |x1| < l , −εh/2 < x2 < −εh/2 + εh2},

�0 = {x ∈ R
2 : |x1| < l , −ε(h/2 − h2) < x2 < −ε(h/2 − h2)+ ε2h0},

where l and hi , i = 0, 1, 2, have the same order of magnitude. Also we define h as h = h1+h2.
The interface boundary includes two parts, S+ and S−, specified by

S+ = {x : |x1| < l , x2 = −ε(h/2 − h2)+ ε2h0},
S− = {x : |x1| < l , x2 = −ε(h/2 − h2)}.

(2.1)

The upper and lower surfaces of the compound region are

�+ = {x : |x1| < l , x2 = ε2h0 + εh/2},
�− = {x : |x1| < l , x2 = −εh/2}.

Introducing the stretched variables
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t0 = ε−2(x2 + ε(h/2 − h2)− ε2h0/2),

t1 = ε−1(x2 − ε2h0 − εh2/2),

t2 = ε−1(x2 + εh1/2),

(2.2)

one can verify that

ti ∈ [−hi/2, hi/2], i = 1, 2; t0 ∈ [−h0/2, h0/2] (2.3)

and

∂2 = ε−2∂t0, ∂2 = ε−1∂ti , i = 1, 2, (2.4)

where the notation ∂α means the partial derivative with respect to xα .

3. Formulation of the problem

Here we present a set of boundary-value problems for the Laplacian. This corresponds to
the case of anti-plane shear deformation for the layered structure described in the previous
Section. We look for the displacement vector which has the form

u(i) = (0, 0, w(i)(x1, x2)),

with the functions w(i) satisfying the equations

µi�w
(i)(x1, x2) = 0. (3.1)

Here, µi are the shear moduli of the materials and in all this section, the index i may take the
values 0, 1, 2. We shall use the superscript index notation w(i) to denote the displacement in
the region �i .

The Neumann boundary conditions on the sides �± are given as follows

∂w(1)

∂x2
= εp(1)(x1) on �+, (3.2)

∂w(2)

∂x2
= εp(2)(x1) on �−. (3.3)

On the interfaces S± we assume that displacement and traction are continuous

w(1) = w(0), µ1
∂w(1)

∂x2
= µ0

∂w(0)

∂x2
on S+, (3.4)

w(0) = w(2), µ2
∂w(2)

∂x2
= µ0

∂w(0)

∂x2
on S−. (3.5)

The ends x1 = ±l of the compound beam are assumed to be subject to the following end
conditions

w(i)(x1 = −l, x2) = ψ(i)− (
x2

ε
), w(i)(x1 = l, x2) = 0, (3.6)
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when i = 1, 2. For the middle layer (i = 0), we assume that the left edge is subjected to
the homogeneous Neumann condition, whereas at the right end (x1 = l) w(0) = 0. Here the
subscript ‘−’ refers to the left end of the three-layered structure and ‘+’ to the right end. The
end condition at the right end is taken to be zero for the sake of simplicity without loss of
generality.

Our aim is to find an asymptotic approximation, uniformly valid in the whole domain �ε
and its boundaries (see Figure 1), for the functions w(i), for i = 0, 1, 2 in the form (1.1).

As stated in Section 1, the middle layer is normalised in such a way that

µ0 = ε3µ; (3.7)

µ has the same order of magnitude as µ1 and µ2.

4. The asymptotic method far from the ends

First, we consider a special case when both ends of the beam are clamped (ψ(i)− = 0). Expan-
sion (1.1) applies to the displacement outside neighbourhoods of the ends of the composite
beam. Putting the series (1.1) into system (3.1) and equating the coefficients of like powers of
the small parameter ε, we obtain the following recurrent system of boundary-value problems
on the cross-section of the compound beam,

∂2W(i,k)

∂t2i
= −∂

2W(i,k−2)

∂x2
1

in �i, i = 1, 2 (4.1)

and

∂2W(0,k)

∂t20
= −∂

2W(0,k−4)

∂x2
1

in �0. (4.2)

Also, the boundary conditions (3.2) become

∂W(1,k)

∂t1
= δk2p(1)(x1) on �+, (4.3)

∂W(2,k)

∂t2
= δk2p(2)(x1) on �−. (4.4)

The interface boundary conditions given by relations (3.4) and (3.5), can be written as

W(1,k) = W(0,k), µ1∂t1W
(1,k) = µ∂t0W(0,k−2) on S+, (4.5)

W(2,k) = W(0,k), µ2∂t2W
(2,k) = µ∂t0W(0,k−2) on S−, (4.6)

where k = 0, 1, 2, and all terms with negative indices vanish.
For convenience the following notation shall be used

W+(1,k) = W(1,k)(x1,
−h1

2
),W−(2,k) = W(2,k)(x1,

h2

2
). (4.7)

We can easily derive the following condition for the traction on S+ and S− which is given
by
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µ2
∂W−(2,2)

∂t2
= µ1

∂W+(1,2)

∂t1
= µ∂W

(0,0)

∂t0
= µ

h0
D(0). (4.8)

This relation (also see [14] and [16]) is consistent with [13, p. 235, Equation (2.6)]. Here,
D(0)(x1) is the displacement jump, which is unknown,

D(0)(x1) = W(1,0)(x1)−W(2,0)(x1). (4.9)

SinceW(i,0), i = 1, 2, are independent of ti , we have

W+(1,0) = W(1,0)(x1), W−(2,0) = W(2,0)(x1).

It can be shown that D(0)(x1) must satisfy the following equation

h1h2∂
2
1D

(0)(x1)− µ(µ1h1 + µ2h2)

µ1µ2h0
D(0)(x1) = − (p(1)(x1)h2 + p(2)(x1)h1

)
.

The leading-order terms of the asymptotic approximation (1.1) for the displacement field
(3.1) satisfy the following second-order differential equations

∂2
1W

(1,0)(x1) = µ

µ1h0h1

{
W(1,0)(x1)−W(2,0)(x1)

}− p(1)(x1)

h1
,

∂2
1W

(2,0)(x1) = − µ

µ2h0h2

{
W(1,0)(x1)−W(2,0)(x1)

}+ p(2)(x1)

h2
,

(4.10)

and, when ψ(i)− = 0, the boundary conditions are given by

W(i,0)(±l) = 0, i = 1, 2. (4.11)

It is worth mentioning that the differential equations (4.10) were derived as solvability
conditions for some model boundary-value problems on the cross-section of the beam (see
[15] for details). Further analysis of boundary conditions at the ends of the beam will be given
in the next section.

We shall conclude this section by emphasising thatD(0)(x1) is of orderO(1). In this special
case (see relation (3.7)), the interface layer can be replaced by a contour (surface) where the
displacement field is discontinuous.

5. Behaviour near the ends

In this section we study a model problem near the ends of the layered structure when the end
conditions are given as (3.6), where ψ(i)− �= 0.

5.1. DISCREPANCY IN THE BOUNDARY CONDITIONS

The leading terms of the asymptotic series (1.1) W(1,0) and W(2,0), as specified by the system
of ordinary differential equations (4.10), do not necessarily satisfy the boundary conditions at
the end x1 = −l. That is,

W(i,0)(−l, ti) �= ψ(i)− (ε−1x2), i = 1, 2.
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Figure 2. The semi-infinite strip.

Hence, we introduce the functions v(i)− to compensate for the discrepancy near the edges of the
beam. These functions will be defined as solutions of model problems of the boundary-layer
type. First, we will consider the left end of the layered structure. The error to be removed is
given by

ψ
(i)
− (ε−1x2)−W(i,0)(−l, ti ), i = 1, 2.

We introduce the scaled variables ξ = x1+l
ε

and ti , where t1, t2 are given by (2.2), while t0
is re-defined as

t0 = ε−1(x2 + ε(h/2 − h2)− ε2h0/2).

The functions v(i)− satisfy Laplace’s equation

�v
(i)
− (ξ, ti) = 0, in"i, i = 0, 1, 2, (5.1)

where ξ > 0 and ti, i = 0, 1, 2, are specified as follows,

ti ∈
[
−hi

2
,
hi

2

]
, i = 1, 2, t0 ∈

[
−εh0

2
,
εh0

2

]

and the regions "i, i = 0, 1, 2, (see Figure 2) are given by

"i =
{
ξ > 0 , −hi

2
< t1 <

hi

2

}
, i = 1, 2,

"0 =
{
ξ > 0 , −εh0

2
< t0 < ε

h0

2

}
.

Also, the following free-traction conditions are prescribed

∂

∂t1
v
(1)
− (ξ, t1) = 0 on #+, (5.2)

∂

∂t2
v
(2)
− (ξ, t2) = 0 on #−, (5.3)

where the upper and lower surfaces of the compound region are specified as follows

#+ =
{
ξ > 0, t1 = h1

2

}
, #− =

{
ξ > 0, t2 = −h2

2

}
.

The Dirichlet end conditions are given by
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v
(i)
− (0, ti) = ψ(i)− (ti)−W(i,0)(−l, ti

ε
), i = 1, 2. (5.4)

Here it is assumed that the materials are perfectly bonded at the interfaces $+ and $−,

v
(0)
−

(
ξ,
εh0

2

)
= v(1)−

(
ξ,−h1

2

)
, (5.5)

v
(0)
−

(
ξ,−εh0

2

)
= v(2)−

(
ξ,
h2

2

)
, (5.6)

µ1
∂

∂t1
v
(1)
− (ξ, t1) = µ0

∂

∂t0
v
(0)
− (ξ, t0)on$+, (5.7)

µ2
∂

∂t2
v
(2)
− (ξ, t2) = µ0

∂

∂t0
v
(0)
− (ξ, t0) on $−, (5.8)

where the interfaces are given by

$+ =
{
ξ > 0, t1 = −h1

2
, t0 = εh0

2

}
,

$− =
{
ξ > 0, t2 = h2

2
, t0 = −εh0

2

}
.

5.2. EXACT SOLUTION

To simplify our analysis we will assume that h1 = h2 ≡ h∗ and that the materials of the
upper and lower layers have the same shear modulus, µ1 = µ2 ≡ µ∗. Using the separation of
variables method, we write the solution of (5.1) as

v
(i)
− (ξ, ti) = X(i)(ξ)Y (i)(ti), i = 0, 1, 2. (5.9)

Hence, by using the condition

v
(i)
− (ξ, ti)→ 0 as ξ → ∞,

it can be shown that the functions involved in the solution (5.9) are given by

X(i)(ξ) = e−χiξ , Y (i)(ti) = α(i) cos(χi ti)+ β(i) sin(χi ti), (5.10)

where(
2γ (i)

Hi

)2

= χ2
i > 0

is a constant written in this way for convenience and the quantities Hi are given as follows

H1 = H2 ≡ h∗,H0 = εh0. (5.11)

We should note that the quantities γ (i) are some constants to be found by using conditions
(5.7) and (5.8).

Using Equations (5.10), we can write the solution (5.9) as



Slow decay of end effects in layered structures with an imperfect interface 163

v
(i)
− (ξ, ti) = e−χi ξ (α(i) cos(χi ti)+ β(i) sin(χiti)), i = 0, 1, 2, (5.12)

where α(i), β(i), i = 0, 1, 2 are constants to be determined from the Dirichlet end conditions
(5.4).

If one takes into account the continuity of v(i)− at the interface given by (5.5) and (5.6), then
it follows that

χ1 = χ2 = χ0

and in particular, by (5.11) we obtain

γ (1) = γ (2) ≡ γ (∗).

5.3. DECAY RATE OF SOLUTION AT THE LEFT END

Here we shall look for the decay rate of the function v(i)− given by (5.12). Let us introduce the
quantity k as follows:

2γ (∗)

h∗ = 2γ (0)

εh0
= 2γ

2h∗ + εh0
≡ k.

The exponential decay rates 2γ (i)/Hi can be compared with that for a homogeneous strip of
weighted total half-width (h∗ + εh0/2). Defining a non-dimensional weighted area fraction as

f = 2h∗

2h∗ + εh0
, (5.13)

we express γ (∗) and γ (0) in terms of γ and f as follows

γ (∗) = f γ

2
; γ (0) = γ (1 − f ).

Using the boundary conditions (5.2) and (5.3) and continuity conditions (5.5)–(5.8), we
may formulate the following homogeneous system of algebraic equations for the unknown
coefficients α(i) and β(i),

F+ = 0.

The structure of the matrix F is the same as that in [10], and the vector + is given by

+ =
(
α
(0)
j , β

(0)
j , α

(1)
j , β

(1)
j , α

(2)
j , β

(2)
j

)T
.

We seek non-trivial solutions +, when the determinant of F vanishes. Taking into account the
simplifications for this special case where the upper and lower layers are symmetric, bound-
ary conditions (5.2) and (5.3) and continuity conditions (5.5)–(5.8), we find the following
characteristic polynomial

−
(
µ∗

µ0

)2

sin2(f γ ) sin(2γ (1 − f ))+ cos2(f γ ) sin(2γ (1 − f ))

+2µ∗

µ0
cos(f γ ) cos(2γ (1 − f )) sin(f γ ) = 0.

(5.14)
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Here, f �= 1
2 (see (5.13)). The last equation can be written simply as(

cot(f γ ) cot(γ (1 − f ))− µ∗

µ0

)(
cot(f γ ) tan(γ (1 − f ))+ µ∗

µ0

)
= 0. (5.15)

The smallest positive root of Equation (5.15) arises from the first factor. Thus, we find this
root γ from the following relationship

cot(f γ ) cot(γ (1 − f ))− µ∗

µ0
= 0. (5.16)

Given that the middle layer is softer than the upper and lower layers, we substitute µ0 with
ε3µ, where µ has the same order of magnitude as µ∗. Thus, the Equation (5.16) can be written
as

cot(f γ ) cot(γ (1 − f )) = ε−3µ
∗

µ
. (5.17)

The quantity 1 − f is estimated as follows,

1 − f = εh0

2h∗ + εh0
∼ εh0

2h∗ ;
therefore

f = 1 − εh0

2h∗ + · · · .
Also, we notice that

cot

(
εh0

2h∗ γ
)

∼ 2h∗

εh0γ
;

hence we find that the relationship (5.17) can be approximated as

1

γ
cot(γ

2h∗ − εh0

2h∗ ) ∼ 1

γ
cot(γ ) ∼ ε−2µ

∗h0

2µh∗ .

For small values of γ , we have the following estimate

cot(γ ) ∼ 1

γ
,

so, finally, we can give an approximation for γ which was not discussed earlier in the literature

γ ∼ ε
(

2µh∗

µ∗h0

)1/2

. (5.18)

Thus, we have demonstrated that the decay rate for the solution (5.12) is of order O(1)
since ξ = (x1 + l)/ε. In this way, k predicts a slow decay rate for a layered structure with an
imperfect interface.

5.4. BOUNDARY CONDITION FOR THE LEADING-ORDER TERMS

A complete solution to Equations (5.1), subject to prescribed boundary conditions at ξ = 0,
would involve an infinite series of eigenfunctions (including the constant solution) of the form
(5.12) with the following representation
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v
(i)
− (ξ, ti) =

∞∑
j=0

{
exp(−2γ (i)j

Hi
ξ)

[
α
(i)
j cos(

2γ (i)j
Hi

ti)+ β(i)j sin(
2γ (i)j
Hi

ti)

]}
, (5.19)

for i = 0, 1, 2. Here the coefficients α(i)j , β
(i)
j , i = 0, 1, 2; j ≥ 1 are the same as in [11].

To find the value of the coefficient α(i)0 in each layer, one has to use the end conditions
(5.4). Evaluating the solution of the problem in Equations (5.19) at the left end, we have

v
(i)
− (0, ti) = α(i)0 +

∞∑
j=1

[
α
(i)
j cos

(
2γ (i)j ti
Hi

)
+ β(i)j sin

(
2γ (i)j ti
Hi

)]

= ψ(i)− (ti)−W(i,0)(−l), i = 1, 2.

Integrating with respect to the scaled cross-section variable ti in each layer, one finds that∫
(ψ

(i)
− (ti)−W(i,0)(−l))dti =

∫
α
(i)
0 dti .

The functions v(i)− of the boundary-layer type vanish at infinity if and only if α(i)0 = 0, and
hence, when i = 1, 2,

W(i,0)(−l) = 1

Hi

∫
ψ
(i)
− (ti)dti , (5.20)

which constitutes the left-end conditions for the termsW(i,0), i = 1, 2.
Analogously, one can derive the following condition at the right end by using the homoge-

neous Dirichlet boundary condition (3.6),

W(i,0)(+l) = 0. (5.21)

6. Compensating functions and a uniform asymptotic approximation

Following Section 5, we introduce the functions named as compensating functions. They have
the form

V
(i)
− (x1, ti) =

∞∑
j=1

cj exp(−2γ̂ (i)j
Hi

(x1 + l))Y (i)j (ti), (6.1)

where γ (i)j = εγ̂ (i)j is the normalised exponent (see (5.18)), and cj are constants to be specified.

It is emphasised that
∫
Y
(i)
j dti = 0, when we integrate over the cross-section and Y (i)j is given

by (5.10).
Equally, the analysis for the right end of the thin layered structure suggests including some

other functions V (i)+ , i = 0, 1, 2 with the following structure:

V
(i)
+ (x1, ti) = −

∞∑
j=1

dj exp(−2γ̂ (i)j
Hi

(l − x1))Y
(i)
j (ti). (6.2)

The functions V (i)− and V (i)+ can be regarded as a result of a multiple-reflection effect
from the ends of the layered structure due to the fact of the slow decay rate of the functions
described in Subsection 5.3.

To find the constants involved in this analysis, namely cj , dj , j ≥ 1, we look for the
combination of V (i)− + V (i)+ satisfying the following relationships at the edges
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(V
(i)
− + V (i)+ )|x1=−l =

∑
j≥1

Y
(i)
j (ti), (V

(i)
− + V (i)+ )|x1=l = 0. (6.3)

After evaluating the functions (6.1) and (6.2) at the ends and substituting them in the system
(6.3), we get a system for the constants cj and dj

cj − dj exp(−4γ̂ (i)j l

Hi
) = 1, cj exp(−4γ̂ (i)j l

Hi
)− dj = 0, j ≥ 1.

The solution for the constants gives

cj = 1

1 − exp(− 8γ̂ (i)j l

Hi
)

; dj = exp(− 4γ̂ (i)j l

Hi
)

1 − exp(− 8γ̂ (i)j l

Hi
)

. (6.4)

Finally we are able to construct a uniform asymptotic approximation for the functions w(i),
which is given by

w(i) ∼ W(i,0)(x1)+ εW(i,1)(x1)+ ε2W(i,2)(x1, ti)

+V (i)− (x1, ti)+ V (i)+ (x1, ti), i = 0, 1, 2.
(6.5)

We recall that the leading-order terms W(i,0)(x1), i = 1, 2 are the functions that satisfy the
boundary-value problem (4.10)–(4.11) on the cross-section. In the last relationship, V (i)− +
V
(i)
+ , i = 0, 1, 2, compensate for the discrepancy left by W(1,0)(x1) and W(2,0)(x1) at the

left end. The so-called compensating functions model the interaction between the ends when
non-zero conditions are prescribed along the left edge.

7. Numerical examples and final remarks

In this Section a simple numerical example, programmed in PDEToolBox of MATLAB, illus-
trates a very slow decay rate of the boundary layer for a layered structure with an imperfect
interface.

The outer layers were considered to have the same thickness

εh1 = εh2 = 0·6,
whereas the middle layer is thinner

ε2h0 = 0·06.

The length of the region was taken to be 2l = 3. The elastic materials of the regions �i , i =
0, 1, 2, are characterised by Young’s moduli Ei and by the values νi of the Poisson ratio,
i = 0, 1, 2.

For all the tests we considered the upper material to be brass with the following elastic
moduli

E+(Br) = 100 GPa; ν+(Br) = 0·25.

The lower material was assumed to be made of aluminium, with the following elastic
moduli

E−(Al) = 70 GPa; ν−(Al) = 0·30.
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Table 1. The end conditions

Left end Right end

w(1) = 1·5 w(1) = 0

w(2) = −2 w(2) = 0

∂x−1w
(0) = 0 w(0) = 0

Figure 3. The displacement w corresponding to the
case when the middle interface layer is stiff (it is made
of CFRP); it illustrates a fast decay of the displacement
discontinuity far away from the left end of the beam.

Figure 4. The displacement w corresponding to the
case when the middle adhesive layer is soft (it is made
of Scotweld AF-6); the displacement discontinuity is
seen along the whole length of the beam, as predicted
by the asymptotic theory.

We present the test consisting of homogeneous Neumann boundary conditions applied on �+
and �− and the edges conditions as shown in Table 1.

For further details of the elastic parameters for adherents and adhesives we refer to the
monograph [17].

Case 1, A thin and stiff middle layer
In this case, it is assumed that E0 is comparable with E1 and E2. The middle layer was as-
sumed to be made of CFRP (Carbon Fibre Reinforced Laminates) (see Figure 3). This material
is characterised by the elastic moduli,

ECFRP = 135 GPa; νCFRP = 0·30.

Case 2, A thin and soft middle layer
In this case we considered a thin middle layer made of Scotweld AF-6 (see Figure 4) which is
characterised by the elastic moduli,

EPf = 0·07 GPa; νPf = 0·49.

The observation of the numerical results shows that, when we have a thin and stiff middle
layer, the decay rate of the end conditions is very fast as shown in Figure 3, so that we can
easily compare this result with the structure of two perfectly bonded layers.
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In contrast, in Figure 4 a slow decay of the boundary-layer fields is observed. This is the
case when the thin middle layer is acting as an adhesive and gives the interesting effect of a
‘multiple reflection’ throughout the layered beam.

The expansion (6.5) describes the approximation of the displacement field within a thin
rectangular layered structure including a soft and thin middle layer subjected to an anti-plane
shear load.

A future development is envisaged in the analysis of ‘boundary-layer’ fields for torsion
problems involving bars with imperfect interfaces (also see [13]) as well as the analysis of the
edge effects for layered plates with imperfect interfaces.
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