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Abstract

This work is concerned with Hamiltonian networks of weakly and long-range coupled oscillators with either variable or constant on-site
frequencies. We derive an infinite dimensional KAM-like theorem by which we establish that, given any N -sites of the lattice, there is a positive
measure set of small amplitude, quasi-periodic breathers (solutions of the Hamiltonian network that are quasi-periodic in time and exponentially
localized in space) having N -frequencies which are only slightly deformed from the on-site frequencies.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

During the past two decades or so, there has been an increasing interest in the study of coherent structures in spatially-extended
Hamiltonian systems. By studying coherent structures, one is led to the understanding of solutions that are localized in space but
with relatively long lifetimes. Perhaps the simplest and most studied examples of structures of this sort are solitons which one
typically identifies as localized traveling-wave solutions to solitary equations which arise in many problems of physical relevance
such as in the formation of surface water waves or in long-distance signal transmission over optical fibers. Another important
examples of coherent structures are those which, in an appropriate moving reference frame, are time-periodic and spatially localized.
These types of solution, named breathers, have been known for over thirty years in the context of the sine-Gordon equation which,
among other cases of physical interest, has applications in the study of transmission lines made out of Josephson junctions. In fact,
the modified Korteweg–de Vries (KdV) and sine-Gordon equations are well-known to be able to support both types of solutions,
soliton-like and breather-like (cf. [1,2]).

The first numerical account we know of regarding the existence of coherent structures of the type we are concerned with in this
paper can be found in [46] within the context of pure anharmonic crystal lattices with two distinct types of quartic anharmonicity
(fourth-order self-interaction). In this early work it was established (via rotating-wave approximation and lattice Green-function
techniques) that stationary localized vibrational modes can occur at any point along the lattice. Prior to this work, the existence of
localized vibrational modes had already been established for lattices with impurities and the vibrations had been shown to occur
around the impurity. Therefore, this new type of vibrational modes were indeed a feature of the (pure) lattice itself and for this
reason they were called intrinsic localized modes (ILMs). The name discrete breathers was later coined in [14] for the type of ILMs
just described. However, as we pointed out above, the term “breather” had already been in use for some time [1] in the context of
the sine-Gordon equation.
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The importance of breathers or discrete breathers resides in that it is generally believed that their understanding will shed light
into the mechanisms of formation of more general coherent structures as well as of localization and transportation of energy in
infinite dimensional Hamiltonian systems.

Breather-like coherent structures with two or more incommensurable frequencies are referred to as quasi-periodic breathers.
More precisely, breathers or quasi-periodic breathers are time-periodic or quasi-periodic, spatially localized solutions of infinite-
dimensional Hamiltonian systems. In the case of Hamiltonian networks (or Hamiltonian lattice systems), by localization (or self-
localization) we will understand that the solutions, (qn)n∈Z, oscillate with amplitudes that decay at least exponentially as |n| → ∞.
Besides being called ILMs, breathers have often been called discrete solitons, discrete breathers, or dynamical solitons, particularly
so in the physics literature. We prefer to use the term breather since, as opposed to solitons, breathers may exchange energy during
their interaction and ILMs is too generic a term for our purposes.

To put ideas into context, consider an 1-dimensional infinite lattice of oscillators with unit mass, embedded in a medium with
which the oscillators interact. In appropriate dimensionless variables, this corresponds to a Hamiltonian system associated with the
standard symplectic structure

∑
n∈Z dpn ∧ dqn and real analytic Hamiltonian of the form

H =
∑
n∈Z

(
p2

n

2
+ Vn(qn)

)
+W ({qn}). (1.1)

In the above, W is the coupling potential that models the interaction among the lattice points and Vn is the on-site potential that
models the interaction between the medium and the lattice point with coordinate qn . It is usually assumed that, for all n ∈ Z,
Vn(0) = V ′n(0) = 0 and V ′′n (0) = β2

n/2 > 0, as it is the case in most physical systems. The Hamiltonian (1.1) or its associated
equations of motion is referred to as a Hamiltonian network or a Hamiltonian lattice system in which βn’s are called on-site
frequencies.

Among the Hamiltonian networks of the type (1.1) is the celebrated Frenkel–Kontorova (FK) model which describes an 1-
dimensional chain of identical atoms as a dynamical system of lattice points which, in equilibrium, lie equidistant to their nearest
neighbors. Furthermore, every atom is assumed to interact with the substrate or medium in the same way as every other atom in
the lattice and thus the on-site potential is assumed periodic. As for the interaction among lattice points, only interactions among
nearest neighbors is considered. More precisely, the on-site and coupling potentials of the FK model are

Vn(x) = VF K (x) ≡ 1− cos x, n ∈ Z

and

W =
∑
n∈Z

WF K (qn+1 − qn)

respectively, where WF K (x) = gx2/2 and g is the elastic constant of the system. The lattice spacing in equilibrium and the period
of the substrate potential are taken to be the same (equal to 2π ); moreover, there is one and only one atom per energy well of the
potential. Observe that the FK model can be obtained from (1.1) under the following simplifying conditions: uniformity in the atom-
substrate interaction, i.e., Vn(x) ≡ V (x) for all n ∈ Z and V (x) = V (x + 2π); expanding V in its Fourier series and considering
only the first harmonic (VF K ); restricting inter-atomic interactions to nearest neighbors and expanding W in its Taylor series only
to consider second-order (harmonic) terms (WF K ). The result is the simplest nonlinear type of interaction one can consider. Never-
theless, since it first appeared, nearly seventy years ago, the FK model has proven to be a paradigm for a broad class of Hamiltonian
systems capable of sustaining oscillations such as those arising in the adsorption of mono-atomic layers by crystal surfaces, in the
insertion of a single atom (“kink”) in a perfect crystal lattice, or in metals with dislocations (cf. [13] and references therein).

However, there is still a large class of discrete physical and biological systems that cannot be described by the FK model. To
model the general structures and atom dynamics of a crystal lattice, extended FK models of the type (1.1) have been frequently
considered with respect to both short and long range couplings of not necessarily identical oscillators. As an illustration of systems
that fall out the FK model, we mention the case of vibrational modes in micromechanical cantilever arrays which require the
incorporation of damping and driving terms (in case one wants to consider their manipulation) as well as an interaction potential
that takes into account influence among lattice neighbors that reaches farther than the simple nearest neighbor (cf. [35,42,43]).
Another relevant application of Hamiltonian networks of the type described by (1.1) can be found in modeling of the dynamics
of the structure of DNA, in particular, DNA denaturation, i.e., the fluctuations in the opening of base-pairs of double stranded
DNA (cf. [13,18,19,40,51]). For example, [18] introduces the idea that concentrated vibrational modes in DNA are responsible
for the melting of the bonds within the DNA structure and presents a model for the dynamics of the displacements of nucleotide
pairs with a quadratic nearest-neighbor interaction and an attractive-repulsive on-site potential. Hamiltonians that fall within the
category described by (1.1) can also be obtained from the discretization of Hamiltonian PDEs such as Klein–Gordon, KdV and
nonlinear Schrödinger (NLS) equations. But the physical interest in Hamiltonian networks really comes from dynamics which are
far away from those of Hamiltonian PDEs. For instance, condensed matter physics is an area in particular where discreteness plays
an important role.
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Although breathers are well-known in Hamiltonian PDEs like the sine-Gordon equation and the cubic NLS equation, they
appear to be rare and non-robust objects in Hamiltonian PDEs. On the contrary, numerical studies of many physical models find
that the existence of breathers and quasi-periodic breathers is a general phenomenon in Hamiltonian networks, suggesting that the
localization property is due to the discreteness and the nature of nonlinearities rather than disorder (see the recent review [21] and
references therein).

Indeed, there is substantial experimental and numerical evidence (obtained from diverse mathematical models) of the existence
of breathers (or ILMs) in many physical lattice models, for instance in superconducting arrays such as Josephson junction (JJ)
arrays and Josephson ladders (cf. [36,47] and references therein). Another example is that of antiferromagnetic spin lattice systems
(cf. [44] and references therein). Spectroscopy methods have also been used in the detection of breathers within (quasi-)1D crystals
(e.g., [45] introduced a mathematical model with a four-site interaction term). Other works describing vibrational states in crystals
include [15,29]. A common numerical iterative scheme to determine the existence of breathers is the so-called Rotating Wave
Approximation (RWA). RWA was used in [41] to determine the existence of breathers in 1D monoatomic and diatomic lattices
of N particles in the absence of a substrate potential (Vn ≡ 0) and under a two-body central (anharmonic) interaction potential
of physical significance such as the Lennard-Jones or the Born–Mayer plus Coulomb, and under the action of an external driving
force provided by a harmonic (sinusoidal) electric field. The results of [41] are in contrast with previous work in the undriven
case which showed that the development of breathers is impossible when considering higher than fourth order terms in the Taylor
expansion of the interaction potential. The RWA method however, becomes inapplicable when the range of the interaction is longer
than nearest-neighbor and even in the nearest-neighbor case, the complexity of the RWA scheme increases rapidly if one wishes to
consider higher than second-order Taylor approximations of the interaction term.

The need for mathematical models that can incorporate various systems of the types described above became an important
research subject over the past decade, and rigorous methods for the study of breathers in Hamiltonian networks have been developed
recently. Below we will mention only those works which are of relevance to this paper.

The existence of breathers in Hamiltonian networks of the type (1.1) was obtained in [34] for the nearest-neighbor interaction
potential via an anti-integrability (or anti-continuum) method (cf. [3,4]). More precisely, the authors considered the Hamiltonian
(1.1) associated with the coupling potential

WM A =
ε

2

∑
n∈Z

(qn+1 − qn)
2, n ∈ Z,

where ε is the (sufficiently small) coupling constant. Even though the proof presented in [34] involves identical oscillators
(i.e., Vn = V for all n), the authors point out that this condition is not necessary, provided that the excited sites are uniformly
anharmonic and the non-excited sites are uniformly nonresonant. Furthermore, the authors state that their method is also applicable
for interactions that reach farther than the nearest-neighbor interaction. Existence of breathers for the interaction potential WM A
is established near a fixed periodic orbit of the uncoupled Hamiltonian via an implicit-function argument, provided that one either
restricts oneself to work in a space of time-reversible solutions, or the phase is “quenched”, in addition to that, one must impose
conditions of non-resonance (the frequency of the anharmonic mode to be continued as well as the frequencies of all of its harmonics
must lie outside the phonon band) and of anharmonicity (the frequency of the mode must be a non-constant function of its action
(cf. [5])).

Motivated by proving the exponential stability of breathers conjectured in [34,6] also presents a slightly different proof of their
existence by combining Nekhoroshev normal-form and Poincaré continuation-theorem ideas to develop a general theorem which
gives a local normal form without requiring the use of action-angle variables. The idea presented in [6] is strong enough to prove
the existence of breathers in the case of identical oscillators (Vn ≡ V ) with a long-range coupling potential; i.e., a system with
Hamiltonian (1.1) and interaction potential

WB =
ε

4

∑
m 6=n

1
|m − n|α

(qm − qn)
2,

where α > 1 and ε is sufficiently small (note that when α→∞ the interaction becomes nearest-neighbor). The existence of quasi-
periodic breathers for the nearest-neighbor interaction potential is established later on in [7] for certain systems with symmetries
using the same type of Poincaré–Lyapunov continuation techniques.

In light of the previous results, work started to emerge on interaction potentials of order higher than two. A KAM
(Kolmogorov–Arnold–Moser) method for establishing the existence of quasi-periodic breathers with respect to any finite number
of incommensurate frequencies was developed in [50] for the system (1.1) of identical oscillators with third-order nearest-neighbor
interaction, i.e.,

WY =
ε

3

∑
n∈Z

(qn+1 − qn)
3,

where ε is sufficiently small. This work overcame difficulties arising from the infinite multiplicities of normal frequencies, contrast-
ing with previous work on the existence of quasi-periodic solutions in infinite dimensional Hamiltonian systems which required
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finite multiplicities (cf. [31,32,37,38,48]). We mention that the proof of the main result in [50] relies heavily on the assumption that
the interaction potential is third-order, which is important in avoiding the appearance of the continuous spectrum associated with
linearization of the system. The anti-continuity method can also be applied to show the existence of quasi-periodic solutions, but
for systems with no more than two incommensurate frequencies; e.g., for the discrete nonlinear Schrödinger equation (cf. [28]).

For the long-range coupling potential

W ({qn}) =
1
3

∑
m 6=n

e−|n−m|α
|qm − qn|

3

the existence of N -quasi-periodic breathers was shown in recent work of the first and the third author [27] with respect to variable
on-site frequencies (i.e., treating N of the βn’s as parameters) under certain gap conditions among the frequencies.

Almost-periodic breathers, i.e., spatially localized solutions to (1.1) with infinitely many incommensurate frequencies, have also
been investigated. Associated with the third-order, nearest-neighbor interaction potential WY , [22] contains a study of the case
when frequencies are non-negative random variables with smooth distribution of fast decay at infinity and showed that there is a
set Ω ⊂ R∞+ of positive probability measure, such that each ω ∈ Ω corresponds to an almost-periodic breather (see also [39] for
spatial structures of a more general type).

The present work is concerned with proving the existence of quasi-periodic breathers in an 1-dimensional lattice of oscillators
with weak coupling of a long-range type; i.e., in a system with Hamiltonian

H =
∑
n∈Z

(
p2

n

2
+ Vn(qn)

)
+ εW ({qn}), (1.2)

where Vn’s are on-site potentials satisfying Vn(0) = V ′n(0) = 0 and V ′′n (0) =
β2

n
2 > 0, ε is sufficiently small, and W ({qn}) is the

interaction potential of the form

W ({qn}) =
1
p

∑
m 6=n

C(m, n)(qm − qn)
p, p ≥ 3, (1.3)

in which C(m, n)’s are either exponential coupling coefficients, i.e., C(m, n) = O(e−β|n−m|) as |n − m| → ∞ with respect to
a fixed constant β > 0, or power-law coupling coefficients, i.e., C(m, n) = O( 1

|n−m|α ) as |n − m| → ∞ with respect to a fixed
constant α > 1.

Our choice of Hamiltonian above is motivated by the need to model physical systems, such as the adsorption of atoms (adatoms)
on crystal surfaces, which can exhibit different types of excitation depending on the charge of the adatoms, the nature of the
substrate, etc. In such a system, atoms at the equilibrium states are assumed to be a distance as apart from their nearest neighbors
just as in the case of the FK model. More precisely, the medium is described in terms of a single smooth, periodic-like potential

V satisfying V (nas) = V ′(nas) = 0, V ′′(nas) =
β2

n
2 > 0, n ∈ Z (e.g., V (x) = 1 − cos 2π

as
x), which has energy wells each

occupied by one single atom (thus the wells are also as units of distance apart). In [13] the distinction is made among four types
of interaction potential: exponential potential, power-law potential, Morse potential, and double-well potential, that model a large
class of physically relevant systems involving long-range interactions of identical neutral atoms that interact with one another via
their electron clouds. The first two potentials are convex and repulsive, whereas the other two are nonconvex. Here we will focus
on the first two potentials, i.e., the exponential potential

Wexp(d) = W0e−β(d−as ), β > 0 (1.4)

and the power-law potential

Wpl(d) =
W0

(d − as)α
, α > 1, (1.5)

where W0 is the strength of the energy of interaction between nearest-neighbor adatoms and d ≥ 0 is the distance between any two
adatoms (not necessarily adjacent) in the chain at a particular (fixed) time. Observe that if d < as , which can be the case when
two adatoms are vibrating in adjacent energy wells, then the system is at a higher energy configuration in regards to its equilibrium
configuration. Thus, in order to lower their energy, it is necessary for adatoms to move farther apart, at which point the interaction
with the other adatoms in the chain becomes relevant.

To derive our Hamiltonian, we let Vn(q) = V (nas + q). Then Vn(0) = V ′n(0) = 0 and V ′′n (0) =
β2

n
2 for every n ∈ Z. Let xm be

the absolute position of the mth adatom with respect to a fixed origin and let qm be its relative position with respect to equilibrium;
i.e., xm = mas+qm . Then dm,n = |xm−xn| = |m−n|as+σ(qm−qn) where σ = sign(m−n), and, with respect to the exponential



2870 J. Geng et al. / Physica D 237 (2008) 2866–2892

Fig. 1. Mono-atomic lattice with interaction potential of exponential type.

potential, we have

W =
1
2

∑
m 6=n

Wexp(|xm − xn|)

=
1
2

∑
m 6=n

W0e−β(|m−n|as+σ(qm−qn)−as ) =
1
2

∑
m 6=n

W0e−β(|m−n|−1)as e−βσ(qm−qn)

=
W0

2

∑
m 6=n

e−β(|m−n|−1)as (1− (βσ)(qm − qn)+
1
2!
(βσ)2(qm − qn)

2
−

1
3!
(βσ)3(qm − qn)

3
+ · · ·).

Thus our coupling potential (1.3) with exponential coupling coefficients corresponds to considering only the pth-order interaction
terms, where p ≥ 3, in the Taylor expansion of Wexp in relative coordinates. The interaction of adatoms in relative coordinates are
demonstrated in Fig. 1. This idea of identifying various types of dominating factors out of a fundamental interaction potential
via Taylor expansions has been frequently used in physics. For instance, if in the expansion above one considers only the
nearest-neighbor cubic terms together with all (m 6= n) quadratic terms, a potential of the so-called Kac-Baker form is obtained
(cf. [13] p. 54).

Based on a similar Taylor expansion of the power-law potential Wpl , we can also obtain the interaction potential (1.3) with
respect to the power-law coupling coefficients.

Our main results will lie in two categories: one for a family of long range Hamiltonian networks and the other one for a fixed
Hamiltonian network. The former case typically occurs when long range coupling of harmonic oscillators is considered, for which,
due to the lack of parameters, a finite set of on-site frequencies β ′ns need to be treated as parameters in order for quasi-periodic
breathers to exist. The later case concerns the coupling of a fixed family of anharmonic oscillators. For each n ∈ Z, because the
on-site potential Vn is assumed to be locally convex, for any 0 < h � 1, the equation

p2

2
+ Vn(p) = h

defines a simple closed curve, Γn(h), on the pq-plane, that encloses the origin. Let

ρn(h) =
∮

Γn

pdq (1.6)

be the area enclosed by Γn(h). Then ρn(h) = O(|h|) is real analytic and ρ′n(h) 6= 0 for all 0 < h � 1. The potential Vn or
the corresponding oscillator is said to be anharmonic if ρ′′n (h) 6= 0 for all 0 < h � 1. An anharmonic oscillator admits a set of
frequencies near 0 which gives parameters needed for the problem. A typical example of anharmomic potential is the sinusoidal
one.

This paper is organized as follows. In Section 2 we state our main results into two theorems and also introduce an abstract
infinite-dimensional KAM theorem which implies our main results. Sections 3 and 4 are devoted to the proof of the abstract KAM
theorem. More precisely, in Section 3, we give a detailed construction of the KAM iteration for one KAM step. The proof of
the abstract infinite dimensional KAM theorem is completed in Section 4 where we provide an iteration lemma and show the
convergence and measure estimates. Some technical lemmas are included in the Appendix.

2. Main results

2.1. Quasi-periodic breathers for Hamiltonian networks

Consider the Hamiltonian network (1.2) with the long-range interaction potential (1.3). Let N > 1 be a prescribed integer and
J = {n1, . . . , nN } be a given set of N -sites. In the case of power-law interaction potential, we further assume that the power α in
the power-law coupling coefficients is greater than N + 80.
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We first consider the case with variable on-site frequencies that ω = (βn1 , . . . , βnN ) is treated as parameters in a bounded closed
region O in RN

+ , while the remaining βn’s are fixed.

Theorem A. Consider the Hamiltonian networks (1.2) with the interaction potential (1.3). Let N ,J be as the above and assume
that |βn| ≥

1
|n|2

as |n| � 1. Then there exist a family of Cantor sets Oε ⊂ O for |ε| � 1 with meas(O \ Oε) → 0, and Whitney

smooth maps Ωε : Oε → RN , such that for every ω ∈ Oε, the Hamiltonian network {(1.2), (1.3)} associated with ω admits a small
amplitude, linearly stable, quasi-periodic breather q(t) = ({qn(t)}) of N− frequency ωε = Ωε(ω) that is slightly deformed from ω.
Moreover, as |n| � 1, |qn| ∼ e−β|n| in the case with exponential coupling coefficients and |qn| ∼ |n|−α in the case with power-law
coupling coefficients.

For the case with constant on-site frequencies (i.e., all βn’s are fixed), we have the following result.

Theorem B. Consider the Hamiltonian network (1.2) with the interaction potential (1.3), in which all on-site oscillators are
anharmonic. Let N ,J be as the above and assume that |βn| ≥

1
|n|2

as |n| � 1. Then for any given 0 < r0 � 1, there exist

r1 > r0 depending on J , a family of Cantor sets Oε ⊂ O =: {ξ ∈ RN
+ : r0 ≤ |ξ | ≤ r1} for |ε| � 1 with meas(O \ Oε) → 0,

and Whitney smooth maps Ωε : Oε → RN , such that every ξ ∈ Oε corresponds to a linearly stable, quasi-periodic breather
q(t) = ({qn(t)}) of { (1.2), (1.3) } of N− frequency Ωε(ξ). Moreover, |q| = O(

√
|ξ |), and as |n| � 1, |qn| ∼ e−β|n| in the case

with exponential coupling coefficients and |qn| ∼ |n|−α in the case with power-law coupling coefficients.

Remark. (1) Theorem B clearly holds when βn ≡ β∗ for some constant β∗ > 0, which is particularly the case for the coupling of
identical anharmonic oscillators.

(2) Using essentially the same proof, Theorems A and B can be shown to hold for Hamiltonian {(1.2), (1.3)} defined on a higher
dimensional lattice (i.e., n ∈ Zd , d > 1). But at this time, the power α in the case of power-law interaction potential need to be
bigger than N + 40(d + 1) for the existence of N -quasi-periodic breathers.

(3) In both cases considered in Theorems A and B, the interaction potential (1.3) starts from third order terms in qn − qm . In
fact, the quadratic interaction potential may cause the appearance of a continuous spectrum — an obstacle for the existence of
quasi-periodic breathers. Thus in this sense, Theorems A and B seem to be sharp.

(4) The normal variables {wn} in the nearest-neighbor coupling case considered in [50] grow at most linearly in n, which in
turn produces breathers that are super-exponentially localized in space. To the contrary, for the long-range couplings we consider,
normal variables grow at most exponentially in n in the case with exponential coupling coefficients and grow super-exponentially in
n in the case with power-law coupling coefficients, which in turn only produces breathers that are exponentially localized in space
in the exponential case and algebraically localized in space in the power-law case.

(5) Theorem A generalizes the main results in [27] because the on-site frequencies βn in the present case are allowed to
accumulate at any non-negative point as n→∞.

2.2. An abstract KAM theorem

The abstract KAM theorem that we will formulate can be applied to any type of Hamiltonian network of weakly coupled
oscillators with a long-range interaction potential with variable or constant on-site frequencies.

We start by introducing some necessary notation. Given an integer N > 1 and real numbers r, s > 0, we let D(r, s) be the
complex neighborhood of TN

× {0} × {0} × {0} ⊂ TN
× RN

× `1
× `1; i.e.,

D(r, s) = {(θ, I, w, w̄) : |Im θ | < r, |I | < s2, ‖w‖ < s, ‖w̄‖ < s},

where | · | is the sup-norm of complex vectors and ‖ · ‖ stands for the the `1-norm. Let O ⊂ RN be such that |O| > 0. Hereafter,
for simplicity, we use the same symbol | · | to denote the Lebesgue measure of a set.

Let F(θ, I, w, w̄) be a real analytic function on D(r, s) which depends C1-Whitney smoothly (i.e., C1 in the sense of Whitney)
on a parameter ξ ∈ O. In the rest of the paper, all dependencies on ξ are assumed of class C1-Whitney, thus all derivatives with
respect to ξ will be interpreted in this sense. The Taylor–Fourier series expansion of F in θ, I, w, w̄ is given by

F(θ, I, w, w̄) =
∑
α,β

Fαβw
αw̄β ,

where α ≡ (. . . , αn, . . .), β ≡ (. . . , βn, . . .), αn, βn ∈ N, are multi-indices with only finitely many non-vanishing components, and

Fαβ =
∑

k∈ZN ,l∈NN

Fklαβ(ξ)I
lei〈k,θ〉.

We define the weighted norm of F as

‖F‖D(r,s),O ≡ sup
‖w‖<s
‖w̄‖<s

∑
α,β

‖Fαβ‖ |w
α
| |w̄β |, (2.1)
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where

‖Fαβ‖ ≡
∑
k,l

|Fklαβ |Os2|l|e|k|r , |Fklαβ |O ≡ sup
ξ∈O

{
|Fklαβ | +

∣∣∣∣∂Fklαβ

∂ξ

∣∣∣∣} .
In the case of a vector-valued function, G : D(r, s)×O→ Cn , n <∞, we define its weighted norm simply as

‖G‖D(r,s),O ≡
n∑

i=1

‖Gi‖D(r,s),O.

The weighted norm of the Hamiltonian vector field

X F = (FI ,−Fθ , {iFwn }, {−iFw̄n })

associated with a Hamiltonian function F , on D(r, s)×O, is defined by

‖X F‖D(r,s),O ≡ ‖FI ‖D(r,s),O +
1

s2 ‖Fθ‖D(r,s),O +
1
s

(∑
n
‖Fwn‖D(r,s),O +

∑
n
‖Fw̄n‖D(r,s),O

)
.

Associated with the symplectic structure d I ∧ dθ + i
∑

n∈Z dwn ∧ dw̄n , we consider the following family of real-analytic,
parametrized Hamiltonians

H = N + P,

N = 〈ω(ξ), I 〉 +
∑
n∈Z

Ωnwnw̄n,

P = P(θ, I, w, w̄, ξ),

(2.2)

where (I, θ, w, w̄) ∈ D(r, s), ξ ∈ O ⊂ RN , ω : O → RN is C1-Whitney smooth, Ωn , n ∈ Z, are positive constants independent
of ξ , and P is real-analytic with respect to phase variables and C1-Whitney smooth in parameter ξ .

Clearly, when P = 0, the Hamiltonian reduces to N which is completely integrable and admits a family of quasi-periodic
solutions (θ +ω(ξ)t, 0, 0, 0) corresponding to invariant N -tori in phase space. To show the persistence of some of these N -tori, we
need the following assumptions on ω(ξ), Ωn and the perturbation P:
(A1) Non-degeneracy of tangential frequencies: ω : O→ RN is non-degenerate in the sense that

det
(
∂ω

∂ξ

)
6= 0, ξ ∈ O.

(A2) Asymptotic condition of normal frequencies: {Ωn} are positive and satisfy the asymptotic condition that

Ωn ≥
1

|n|2
, |n| � 1.

(A3) Decay properties of the perturbation: P = P̄ , and if we write P = P̆ + Ṕ + P̀ , where

P̆ = P̆(θ, I, w, w̄, ξ) = P̆(θ, I, 0, 0, ξ)+
∑
n∈Z

αn+βn≥1

P̆n(θ, I, ξ)wαn
n w̄

βn
n ,

Ṕ = Ṕ(w, w̄, ξ) =
∑

n,m∈Z,n 6=m
αn+βn ,αm+βm≥1
αn+βn+αm+βm≥3

Ṕnm(ξ)w
αn
n w̄

βn
n w

αm
m w̄βm

m ,

P̀ = P̀(w, w̄, ξ) =
∑
n∈Z

O(|wn|
3), (2.3)

then for each n,m lying in the range above, either there is a constant β > 0 such that

‖P̆n(θ, I, ξ)‖ ≤ e−β|n|, (2.4)

‖Ṕnm(ξ)‖ ≤ e−β|n−m|
; (2.5)

or there is a constant α > N + 80 such that

‖P̆n(θ, I, ξ)‖ ≤
1
|n|α

, (2.6)

‖Ṕnm(ξ)‖ ≤
1

|n − m|α
. (2.7)
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Our abstract KAM theorem states as follows.

Theorem C. Consider the Hamiltonian (2.2) and assume (A1)–(A3). Then for each γ > 0 sufficiently small, there exists a positive

constant ε = ε(O, α,N , γ, r, s) ∼ γ
32
5 such that if ‖XP‖D(r,s),O < ε, then the following holds. There exist Cantor sets Oγ ⊂ O

with |O \Oγ | = O(γ ) and maps

Ψ : TN
×Oγ → D(r, s), ω̃ : Oγ → RN , (2.8)

which are real-analytic in θ and C1-Whitney smooth in ξ with ‖Ψ − Ψ0‖D( r
2 ,0),Oγ → 0 and |ω̃ − ω|Oγ → 0 as γ → 0, where

Ψ0 is the trivial embedding: TN
× O → TN

× {0, 0, 0}, such that each ξ ∈ Oγ and θ ∈ TN correspond to a linearly stable,
N-frequency quasi-periodic solution Ψ(θ + ω̃(ξ)t, ξ) = (θ + ω̃(ξ)t, I (t), {wn(t)}) of the equations of motion associated with
the Hamiltonian (2.2). Moreover, |wn| ∼ e−β|n| under the conditions (2.4) and (2.5) and |wn| ∼ |n|−α under the conditions
(2.6) and (2.7).

Remark. (1) Theorem C is rather different from those for Hamiltonian PDEs. Under the perturbation decay condition (A3) which is
natural for Hamiltonian networks, Theorem C allows the normal frequencies to have infinite multiplicity and polynomial decay. On
the contrary, Hamiltonian PDEs like NLS, wave, beam and KdV equations always have normal frequencies with finite multiplicity
and linear or super-linear growth, and do not satisfy perturbation decay conditions like (A3) in general. The lacking of such a
perturbation decay condition in Hamiltonian PDEs makes the respective infinite-dimensional KAM or CWB theory much harder
especially in higher space dimensions because the usual failure of the second Melnikov conditions during KAM or Newton iterations
(see [8–12,16,17,20,23–26,30–32,37,38,48] and references therein).

(2) The assumption (A3) clearly holds in the case with short-range interaction potential considered in [50]. Thus, Theorem C
generalizes the main result of [50] to the case with long-range interaction potential. Due to the iteration scheme we adopt in this
paper, the proof of Theorem C is even simpler than that of the analogous theorem in [50].

2.3. Proof of Theorems A and B

We will use the standard procedure to derive action-angle-normal variables for the Hamiltonian (1.2) and show that, in these
variables, H is of the form described in Theorem C, from which Theorems A and B will consequently follow.

The desired normal form in the case with variable on-site frequencies (i.e, the case considered in Theorem A) was derived
in [27].

To derive the normal form in the case with constant on-site frequencies (i.e., the case considered in Theorem B), we fix a
0 < r0 � 1 and let J = {n1, . . . , nN } be a set of prescribed N -sites. Then a second-order Taylor expansion of the terms of the
on-site potential associated with the set Z1 = Z \ J yields

H =
∑
n∈J

(
p2

n

2
+ Vn(qn)

)
+

∑
n∈Z1

(
p2

n

2
+
β2

n q2
n

2
+ O(|qn|

3)

)
+
ε

p

∑
m 6=n

C(m, n)(qm − qn)
p. (2.9)

Let ρ j (h), j = 1, . . . , N , be as in (1.6). Then it is clear that there exists a r1 > r0 such that the inverse H0, j : [r0, r1] → R+:
ρ j 7→ h j of ρ j (h) is well-defined for each j = 1, . . . , N . Also let (qn, pn) = (

1
√
βn
vn,
√
βn v̄n) for n ∈ Z1 be the normal-coordinate

change. A standard action-angle-normal coordinate-reduction procedure leaves (2.9) in the form

H =
N∑

j=1

H0, j (ρ j )+
∑
n∈Z1

βn

2
(v2

n + v̄
2
n + O(|vn|

3))+
ε

p

∑
m 6=n

C(m, n)(qm − qn)
p,

where qm, qn’s are understood as functions of the new variables. Now let vn = (wn + w̄n)/
√

2 and v̄n = (wn − w̄n)/i
√

2 for every
n ∈ Z1. Then

H =
N∑

j=1

H0, j (ρ j )+
∑
n∈Z1

(βnwnw̄n + O(|wn + w̄n|
3))+

ε

p

∑
m 6=n

C(m, n)(qm − qn)
p. (2.10)

Again, in the above, qm, qn’s are understood as functions of the new variables. In order to write (2.10) in normal form as described
in Theorem C, we first introduce parameters ξ j by setting ρ j = ξ j + I j , j = 1, . . . , N , then expand H0, j (ξ j + I j ) into Taylor series
about I j = 0 and disregard constant terms that do not affect the dynamics. Then (2.10) becomes

H = 〈ω(ξ), I 〉 +
N∑

j=1

O(|I j |
2)+

∑
n∈Z1

(βnwnw̄n + O(|wn + w̄n|
3))+

ε

p

∑
m 6=n

C(m, n)(qm − qn)
p,



2874 J. Geng et al. / Physica D 237 (2008) 2866–2892

where ω(ξ) = (H ′0,1(ξ1), . . . , H ′0,N (ξN )). Since each Vn j is anharmonic, we can assume without loss of generality that ω is a

diffeomorphism from O ≡ {ξ ∈ RN
+ : r0 ≤ |ξ | ≤ r1} to ω(O), i.e., the condition (A1) is satisfied. Now introduce the rescaling

I j → ε1/2 I j , (wn, w̄n)→ (ε1/4wn, ε
1/4w̄n), H → ε−1/2 H , and ε1/4

→ ε. The rescaled Hamiltonian reads

H = 〈ω(ξ), I 〉 +
∑
n∈Z1

βnwnw̄n + ε

ε p−3

p

∑
m 6=n

C(m, n)(qm − qn)
p
+

∑
n∈Z1

O(|wn + w̄n|
3)+ ε

N∑
j=1

O(|I j |
2)


=: 〈ω(ξ), I 〉 +

∑
n∈Z1

βnwnw̄n + εP(I, θ, w, w̄, ξ).

With Ωn = βn , ∀n ∈ Z1, the condition (A2) is clearly satisfied. It is also easy to see that P̄ = P , and P can be decomposed into a
sum of three terms P̆ , Ṕ , P̀ of the form

P̆ = P̆(I, θ, w, w̄, ξ) = P̆(θ, I, 0, 0, ξ)+
∑
n∈Z1

αn+βn≥1

P̆n(θ, I, ξ)wαn
n w̄

βn
n ,

Ṕ = Ṕ(w, w̄, ξ) =
∑

n,m∈Z1,n 6=m
αn+βn ,αm+βm≥1
αn+βn+αm+βm≥3

Ṕnm(ξ)w
αn
n w̄

βn
n w

αm
m w̄βm

m ,

P̀ = P̀(w, w̄, ξ) =
∑
n∈Z1

O(|wn|
3),

in which P̆n(θ, I, ξ), Ṕnm(ξ), respectively, satisfy (2.4) and (2.5) (or (2.6) and (2.7)), respectively, in the case that C(m, n) are
exponential coupling coefficients (or power-law coupling coefficients). Hence the condition (A3) is also satisfied.

Thus, Theorems A and B follow from Theorem C.

3. KAM step

The remaining sections are devoted to the proof of Theorem C. For simplicity, we only treat the case when P satisfies (2.4) and
(2.5) with β = 1.

In this section we present the KAM iteration scheme applied to (2.2). This is a succession of infinitely many steps (KAM steps or
iterations) whose purpose is to eliminate lower-order θ -dependent terms in P . At each KAM step the perturbation is made smaller
at the cost of excluding a small-measure set of parameters. It will be shown that the KAM iterations converge and that, in the end,
the total measure of the set of parameters that has been excluded is small.

To begin the KAM iteration, we set r0 = r and γ0 = γ .

3.1. Normal form

In order to perform the KAM iteration scheme, we will first write the Hamiltonian (2.2) into a normal form that is more
convenient for this purpose. For simplicity, we only outline the derivation of the normal form. Detailed construction and estimation
of terms in the normal form is similar to those for the general KAM step which we will show later.

Choose ε∗ ∼ ε
5
4 and let K∗ = | ln ε∗|, K0 = 5K∗, ε0 = ε

5
4
∗ . Also let s0 be such that 0 < s0 < min{ε0, s}.

Observe that, using (2.3)–(2.5) in assumption (A3) and Cauchy inequality (Lemma A.2 in the Appendix), one can make s0
smaller if necessary such that

‖X Ṕ+P̀‖D(r0,s0)×O ≤ ε∗.

We now consider the term P̆ . According to (2.4) and the definition of norm (2.1) we have

P̆ = P̆(θ, I, 0, 0, ξ)+
∑
n∈Z

αn+βn≥1

P̆n(θ, I, ξ)wαn
n w̄

βn
n

=

∑
k,l

P̆kl I lei〈k,θ〉
+

∑
n,k,l

αn+βn≥1

P̆klαnβn
n I lei〈k,θ〉wαn

n w̄
βn
n ,

where

‖P̆kl‖ ≤ e−|k|r0 , ‖P̆klαnβn
n ‖ ≤ e−|k|r0e−|n|. (3.1)
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Let

R =
∑

k,|l|≤1

P̆kl I lei〈k,θ〉
+

∑
|n|≤K∗,k

1≤αn+βn≤2

P̆kαnβn
n ei〈k,θ〉wαn

n w̄
βn
n .

It is clear that

P̆ − R =
∑
|n|>K∗
αn+βn≥1

P̆kαnβn
n ei〈k,θ〉wαn

n w̄
βn
n + O(|I |2)+ O(|w|3).

It thus follows from (3.1) and Cauchy inequality (Lemma A.2 in the Appendix) that one can make s0 small enough so that

‖X P̆−R‖ ≤ ε∗.

To handle the term R, we will first construct a symplectic transformation Φ∗ = Φ1
F∗

defined as the time-1 map of the Hamiltonian
flow associated with a Hamiltonian F∗ of the form

F∗ = F̄∗ =
∑

k 6=0,|l|≤1

Fkl I lei〈k,θ〉
+

∑
k,|n|≤K∗

(Fk10
n wn + Fk01

n w̄n)ei〈k,θ〉

+

∑
k,|n|≤K∗

(Fk20
nn wnwn + Fk02

nn w̄nw̄n)ei〈k,θ〉
+

∑
k 6=0,|n|≤K∗

Fk11
nn wnw̄nei〈k,θ〉,

such that all resonant terms P̆kl I lei〈k,θ〉, k 6= 0, |l| ≤ 1; P̆kαnβn
n ei〈k,θ〉w

αn
n w̄

βn
n , k 6= 0, |n| ≤ K∗, αn + βn ≤ 2 will be eliminated,

and terms P̆0l I l , |l| ≤ 1; P̆011
nn wnw̄n , |n| ≤ K∗ will be added to the normal form part of the new Hamiltonian. More precisely, let

F∗ satisfy the homological equation

{N , F∗} + R =
∑
|l|≤1

P̆0l I l
+

∑
|n|≤K∗

P̆011
nn wnw̄n .

One can show that this homological equation is solvable on the parameter set

O∗ =

ξ ∈ O :
|〈k, ω〉| ≥

γ

|k|τ
, k 6= 0

|〈k, ω〉 + Ωn| ≥
γ

|k|τ |n|2
,

|〈k, ω〉 + 2Ωn| ≥
γ

|k|τ |n|2

 .
In this way we obtain the transformation Φ∗ which transforms the Hamiltonian (2.2) to

H∗ = H ◦ Φ∗ = N∗ + P̆∗ + Ṕ + P̀ = N̄∗ + ¯̆P∗ + ¯́P + ¯̀P,
N∗ = e∗ + 〈ω∗(ξ), I 〉 +

∑
|n|≤K∗

Ω∗nwnw̄n +
∑
|n|>K∗

Ωnwnw̄n,

where ω∗ = ω + P̆0l(|l| = 1), Ω∗n = Ωn + P̆011
nn , and

P̆∗ = P̆∗(θ, I, wn(|n|≤K∗), w̄n(|n|≤K∗), ξ)+
∑
|n|>K∗
αn+βn≥1

P̆∗n (θ, I, wm(|m|≤K∗), w̄m(|m|≤K∗), ξ)w
αn
n w̄

βn
n

satisfies

‖P̆∗n (θ, I, wm(|m|≤K∗), w̄m(|m|≤K∗), ξ)‖ ≤ e−(|n|−K∗).

The first and second terms in the above expression for P̆∗ come from P ◦ Φ∗ and P̆ ◦ Φ∗ + Ṕ ◦ Φ∗, respectively. Moreover, the
decay property of P̆∗n follows from the fact that Φ∗ depends only on I , θ and wm , w̄m for |m| ≤ K∗.

Now let us write the second term in P̆∗ as∑
|n|>K∗
αn+βn≥1

P̆∗n (θ, I, wm(|m|≤K∗), w̄m(|m|≤K∗), ξ)w
αn
n w̄

βn
n

=

∑
|n|>K0
αn+βn≥1

P̆∗n (θ, I, wm(|m|≤K∗), w̄m(|m|≤K∗), ξ)w
αn
n w̄

βn
n +

∑
K∗<|n|≤K0
αn+βn≥1

P̆∗n (θ, I, wm(|m|≤K∗), w̄m(|m|≤K∗), ξ)w
αn
n w̄

βn
n .

It is easy to see that, on D(r0, s0) × O∗, the norm of the vector field associated with the first term above is bounded by ε2
∗.

However, due to the condition (A2), terms of the form P̆∗mnwmw̄n + P̆∗nmwnw̄m in the second term will not be canceled by solving
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a homological equation, hence they need to be included in the normal part of the Hamiltonian. More precisely, let

R∗ =
∑

k,|l|≤1

P̆∗kl I lei〈k,θ〉
+

∑
|m|≤K∗,|n|≤K0,k

1≤αm+βn≤2

P̆∗kαmβn
mn ei〈k,θ〉(wαm

m w̄βn
n + w̄

αm
m wβn

n )

and

F∗∗ = F̄∗∗ =
∑

k 6=0,|l|≤1

fklei〈k,θ〉 I l
+

∑
k,|n|≤K0

( f k10
n wn + f k01

n w̄n)ei〈k,θ〉

+

∑
k,|m|≤K∗,|n|≤K0

( f k20
nm wnwm + f k02

nm w̄nw̄m)ei〈k,θ〉
+

∑
k 6=0,|m|≤K∗,|n|≤K0

( f k11
nm wnw̄m + f k11

mn wmw̄n)ei〈k,θ〉

+

∑
k,K∗<|n|≤K0

( f k20
nn wnwn + f k02

nn w̄nw̄n)ei〈k,θ〉
+

∑
k 6=0,K∗<|n|≤K0

f k11
nn wnw̄nei〈k,θ〉

satisfy the homological equation

{N∗, F∗∗} + R∗ =
∑
|l|≤1

P̆∗0l I l
+

∑
|m|≤K∗,|n|≤K0

(P̆∗011
nm wnw̄m + P̆∗011

mn wmw̄n)+
∑

K∗<|n|≤K0

P̆∗011
nn wnw̄n .

It is easy to see that the above equation is solvable on the domain

O0 =



ξ ∈ O∗ :

|〈k, ω∗〉| ≥
γ

|k|τ
, k 6= 0

|〈k, ω∗〉 + Ω∗n | ≥
γ

|k|τ |n|2
, |n| ≤ K∗

|〈k, ω∗〉 + Ωn| ≥
γ

|k|τ |n|2
, |n| > K∗

|〈k, ω∗〉 + Ω∗m + Ω∗n | ≥
γ

|k|τ |m|2|n|2
, |m|, |n| ≤ K∗

|〈k, ω∗〉 + Ω∗m + Ωn| ≥
γ

|k|τ |m|2|n|2
, |m| ≤ K∗, |n| > K∗

|〈k, ω∗〉 + Ω∗m − Ω∗n | ≥
γ

|k|τ |m|2|n|2
, k 6= 0, |m|, |n| ≤ K∗

|〈k, ω∗〉 + Ω∗m − Ωn| ≥
γ

|k|τ |m|2|n|2
, k 6= 0, |m| ≤ K∗, |n| > K∗

|〈k, ω∗〉 + 2Ωn| ≥
γ

|k|τ |n|2
, |n| > K∗



.

Now under the symplectic transformation Φ∗∗ = Φ1
F∗∗

, we have

H0 = H∗ ◦ Φ∗∗ = N0 + P0 = N̄0 + P̄0,

N0 = e0 + 〈ω0(ξ), I 〉 + 〈A0z0, z̄0
〉 +

∑
|n|>K0

Ωnwnw̄n,

where

e0 = e∗ + P̆∗00,

ω0 = ω∗ + P̆∗0l(|l| = 1),

〈A0z0, z̄0
〉 =

∑
|n|≤K0

Ω∗∗n wnw̄n +
∑

|m|≤K∗,|n|≤K0,m 6=n

(P̆∗011
mn wmw̄n + P̆∗011

nm wnw̄m),

Ω∗∗n = Ω∗n + P̆∗011
nn ,

P0 = P̆0 + Ṕ0 + P̀0,

P̆0 = P̆(θ, I, z0, z̄0, ξ) = P̆0(θ, I, wn(|n|≤K0), w̄n(|n|≤K0), ξ)+
∑
|n|>K0
αn+βn≥1

P̆0
n (θ, I, wm(|m|≤K0), w̄m(|m|≤K0), ξ)w

αn
n w̄

βn
n

=: P̆0(θ, I, z0, z̄0, ξ)+
∑
|n|>K0
αn+βn≥1

P̆0
n (θ, I, z0, z̄0, ξ)wαn

n w̄
βn
n ,

‖P̆0
n (θ, I, z0, z̄0, ξ)‖ ≤ e−(|n|−K0), |n| > K0,

Ṕ0 = Ṕ(w, w̄, ξ) =
∑
n 6=m

αn+βn ,αm+βm≥1
αn+βn+αm+βm≥3

Ṕ0
nm(ξ)w

αn
n w̄

βn
n w

αm
m w̄βm

m ,



J. Geng et al. / Physica D 237 (2008) 2866–2892 2877

‖Ṕ0
nm(ξ)‖ ≤ e−|n−m|,

P̀0 = P̀(w, w̄, ξ) =
∑
n∈Z

O(|wn|
3).

In the above,

z0
= (. . . , wn, . . .)|n|≤K0 , z̄0

= (. . . , w̄n, . . .)|n|≤K0 ,

and A0 is a Hermitian matrix with dim(A0) ≤ K0 and ‖XP0‖D(r0,s0),O0 ≤ ε
5
4
∗ = ε0.

Suppose that after the νth KAM step one arrives at the following Hamiltonian,

H ≡ Hν = N + P = N̄ + P̄ = N + P̆ + Ṕ0 + P̀0,

where

N = Nν = 〈ω(ξ), I 〉 + 〈Az, z̄〉 +
∑
|n|>K

Ωnwnw̄n,

P̆ = P̆ν = P̆(θ, I, z, z̄, ξ)+
∑
|n|>K

αn+βn≥1

P̆n(θ, I, z, z̄, ξ)wαn
n w̄

βn
n

= P̆ν(θ, I, zν, z̄ν, ξ)+
∑
|n|>Kν
αn+βn≥1

P̆νn (θ, I, zν, z̄ν, ξ)wαn
n w̄

βn
n

are defined on a domain D(r, s)×O = D(rν, sν)×Oν , K = Kν is a positive constant,

z = zν = (. . . , wn, . . .)|n|≤K , z̄ = z̄ν = (. . . , w̄n, . . .)|n|≤K ,

P = Pν is such that ‖XP‖ < ε for some ε = εν and

‖P̆n(θ, I, z, z̄, ξ)‖D(r,s),O ≤ e−(|n|−K ), |n| > K .

In what follows, we will show how to construct a symplectic transformation, Φ = Φν , which, in smaller frequency and phase
domains, carries the Hamiltonian H = Hν into the next KAM cycle. In the remaining part of this section, all constants labeled
c1 . . . c12 are positive and independent of the iteration process. We will denote the tensor (or direct) product between two matrices,
A = (ai j ) and B = (bnl), of sizes m × n and k × l, respectively, as A⊗ B. Recall that this product results in a new mk × nl matrix
given by

A ⊗ B = (ai j B) =

a11 B · · · a1n B
... · · ·

...

am1 B · · · amn B

 .
We will also adopt the following definition for the operator norm of a matrix A: if A = (ai j ), then ‖A‖ =
max{supi (

∑
j |ai j |), sup j (

∑
i |ai j |)}.

Let K+ = 5K . In the KAM step detailed below, terms wn , w̄n with K < |n| ≤ K+ will be added to the new normal components
z+, z̄+. To facilitate the calculations when solving a homological equation later on, we will also adopt the following notation when
writing N ,

N = N̄ = e + 〈ω(ξ), I 〉 + 〈Az, z̄〉 +
∑

K<|n|≤K+

Ωnwnw̄n +
∑
|n|>K+

Ωnwnw̄n

=: e + 〈ω(ξ), I 〉 + 〈 Ãz+, z̄+〉 +
∑
|n|>K+

Ωnwnw̄n,

where Ã is a Hermitian matrix with dim( Ã) ≤ K+ given by

Ã =

(
A 0
0 Ωn

)
K<|n|≤K+

and z+ = (. . . , wn, . . .)|n|≤K+ , z̄+ = (. . . , w̄n, . . .)|n|≤K+ .
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3.2. Truncation

Let us start by expanding P̆ , as obtained after the νth KAM iteration, into its Taylor–Fourier series,

P̆ =
∑

k,l,α,β

P̆klαβei〈k,θ〉 I l zα z̄β +
∑

k,l,n,α,β
|n|>K ,αn+βn≥1

P̆klnαβei〈k,θ〉 I l zα z̄βwαn
n w̄

βn
n ,

where k ∈ ZN , l ∈ NN and the multi-index α (β) runs over the set α ≡ (. . . , αm, . . .)|m|≤K , αm ∈ N (resp. β ≡ (. . . , βm, . . .)|m|≤K ,
βm ∈ N). Now let R be the following truncation of P̆:

R(θ, I, z, z̄, w, w̄) =
∑

k,|l|≤1

P̆klei〈k,θ〉 I l
+

∑
k

(〈P̆k10, z〉 + 〈P̆k01, z̄〉)ei〈k,θ〉
+

∑
k,K<|n|≤K+

(P̆k10
n wn + P̆k01

n w̄n)ei〈k,θ〉

+

∑
k

(〈P̆k20z, z〉 + 〈P̆k11z, z̄〉 + 〈P̆k02 z̄, z̄〉)ei〈k,θ〉

+

∑
k,K<|n|≤K+

(〈P̆k20
n z, wn〉 + 〈P̆

k11
n z, w̄n〉 + 〈P̆(−k)11

n z̄, wn〉 + 〈P̆
k02
n z̄, w̄n〉)ei〈k,θ〉

+

∑
k,K<|n|≤K+

(P̆k20
nn wnwn + P̆k11

nn wnw̄n + P̆k02
nn w̄nw̄n)ei〈k,θ〉,

i.e., R consists of all terms on the right hand side of P̆ of the above form.

Remark 3.1. We observe that, due to their decay property, terms in the Taylor–Fourier expansion of P̆ corresponding to |n| > K+
are small enough to be postponed to the next KAM step. Similarly, due to the decay property of P̆ and the fact that Ṕ0 starts from
third order terms, there are no coupling terms of the form

∑
n 6=m

K<|n|,|m|≤K+
wnw̄m in R. If Ṕ0 started from second-order terms, then the

couplings between different oscillators would be so strong that there may be the appearance of continuous spectrum.

Associated with terms in the normal form N , we rewrite R as

R(θ, I, z+, z̄+) = R0 + R1 + R2

=

∑
k,|l|≤1

Pklei〈k,θ〉 I l
+

∑
k

(〈Rk10, z+〉 + 〈Rk01, z̄+〉)ei〈k,θ〉

+

∑
k

(〈Rk20z+, z+〉 + 〈Rk11z+, z̄+〉 + 〈Rk02 z̄+, z̄+〉)ei〈k,θ〉,

where

Rk10
=

(
P̆k10

P̆k10
n

)
K<|n|≤K+

,

Rk01
=

(
P̆k01

P̆k01
n

)
K<|n|≤K+

,

Rk20
=

 P̆k20 1
2
(P̆k20

n )>

1
2

P̆k20
n P̆k20

nn


K<|n|≤K+

,

Rk11
=

(
P̆k11 (P̆(−k)11

n )>

P̆k11
n P̆k11

nn

)
K<|n|≤K+

,

Rk02
=

 P̆k02 1
2
(P̆k02

n )>

1
2

P̆k02
n P̆k02

nn


K<|n|≤K+

.

Since R̄ = R, it is clear that P(−k)l = Pkl , R(−k)10 = Rk01, R(−k)01 = Rk10, R(−k)20 = Rk02, R(−k)11
>

= Rk11, and

R(−k)02 = Rk20.
Now, if we write H = N + R + (P − R), then, from our definition of norms, it follows that

‖X R‖D(r,s),O ≤ ‖XP‖D(r,s),O ≤ ε.
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Let r+ = r
2 +

r0
4 and η = ε

1
4 . Since

P − R =
∑

|n|>K+,αn+βn≥1

P̆n(θ, I, z, z̄, ξ)wαn
n w̄

βn
n + O(|I |2 + |I ||w| + |w|3)

and

‖P̆n(θ, I, z, z̄, ξ)‖ ≤ e−(|n|−K ),

one has by Cauchy inequality (Lemma A.2 in the Appendix) that

‖XP−R‖D(r++
r−r+

2 ,ηs),O ≤
∑
|n|>K+

e−(|n|−K )
+ O(s) ≤ c1ε

5
4 , (3.2)

provided that

(C0) s ≤ ε.

3.3. The homological equation

Below we show that one can find a Hamiltonian function F , defined on a domain D+ = D(r+, s+) such that, the time-1 map
Φ = Φ1

F associated with the Hamiltonian vector field X F , is a (symplectic) map from D+ to D which transforms H into H+, the
Hamiltonian of the next KAM cycle. Let

F = F(θ, I, z+, z̄+) = F0 + F1 + F2

satisfy the homological equation

{N , F} + R = P̆00 + 〈ω
′, I 〉 + 〈R011z+, z̄+〉, (3.3)

where

F0 =
∑
k 6=0
|l|≤1

Fklei〈k,θ〉 I l ,

F1 =
∑

k
|n|≤K+

( f k10
n wn + f k01

n w̄n)ei〈k,θ〉
=

∑
k

(〈Fk10, z+〉 + 〈Fk01, z̄+〉)ei〈k,θ〉,

F2 =
∑

k,|m|≤K ,|n|≤K+

( f k20
nm wnwm + f k02

nm w̄nw̄m)ei〈k,θ〉
+

∑
k 6=0,|m|≤K ,|n|≤K+

( f k11
nm wnw̄m + f k11

mn wmw̄n)ei〈k,θ〉

+

∑
k,K<|n|≤K+

( f k20
nn wnwn + f k02

nn w̄nw̄n)ei〈k,θ〉
+

∑
k 6=0,K<|n|≤K+

f k11
nn wnw̄nei〈k,θ〉

=

∑
k

(〈Fk20z+, z+〉 + 〈Fk02 z̄+, z̄+〉)ei〈k,θ〉
+

∑
k 6=0

〈Fk11z+, z̄+〉ei〈k,θ〉,

ω′ =

∫
∂ P̆

∂ I
dθ |z+=z̄+=w=w̄=0,I=0.

Lemma 3.1. Eq. (3.3) is equivalent to the following system

〈k, ω〉Fkl = iP̆kl , k 6= 0, |l| ≤ 1,

(〈k, ω〉I − Ã)Fk10
= iRk10,

(〈k, ω〉I + Ã)Fk01
= iRk01,

(〈k, ω〉I − Ã)Fk20
− Fk20 Ã = iRk20,

(〈k, ω〉I + Ã)Fk11
− Fk11 Ã = iRk11, k 6= 0,

(〈k, ω〉I + Ã)Fk02
+ Fk02 Ã = iRk02.

(3.4)

Proof. (3.3) is equivalent to the following system of equations

{N , F0} + R0 = P̆00 + 〈ω
′, I 〉,

{N , F1} + R1 = 0,

{N , F2} + R2 = 〈R
011z+, z̄+〉.

(3.5)
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By simple comparison of coefficients, we see that the first equation in (3.5) is equivalent to the first equation in (3.4). Also note that

{N , F1} = i
∑

k

(〈 〈k, ω〉Fk10, z+〉 − 〈 Ãz+, Fk10
〉)ei〈k,θ〉

+ i
∑

k

(〈 〈k, ω〉Fk01, z̄+〉 + 〈 Ãz̄+, Fk01
〉)ei〈k,θ〉

= i
∑

k

〈(〈k, ω〉I − Ã)Fk10, z+〉ei〈k,θ〉
+ i

∑
k

〈(〈k, ω〉I + Ã)Fk01, z̄+〉ei〈k,θ〉,

and

{N , F2} = i
∑

k

(〈 〈k, ω〉Fk20z+, z+〉 − 〈Fk20z+, Ãz+〉 − 〈 Ãz+, (Fk20)>z+〉)ei〈k,θ〉

+ i
∑
k 6=0

(〈 〈k, ω〉Fk11z+, z̄+〉 + 〈Fk11z+, Ãz̄+〉 − 〈 Ãz+, (Fk11)> z̄+〉)ei〈k,θ〉

+ i
∑

k

(〈 〈k, ω〉Fk02 z̄+, z̄+〉 + 〈Fk02 z̄+, Ãz̄+〉 + 〈 Ãz̄+, (Fk02)> z̄+〉)ei〈k,θ〉

= i
∑

k

(〈 〈k, ω〉Fk20z+, z+〉 − 〈( ÃFk20
+ Fk20 Ã)z+, z+〉)ei〈k,θ〉

+ i
∑
k 6=0

(〈 〈k, ω〉Fk11z+, z̄+〉 + 〈( ÃFk11
− Fk11 Ã)z+, z̄+〉)ei〈k,θ〉

+ i
∑

k

(〈 〈k, ω〉Fk02 z̄+, z̄+〉 + 〈( ÃFk02
+ Fk02 Ã)z̄+, z̄+〉)ei〈k,θ〉

= i
∑

k

〈(〈k, ω〉Fk20
− ÃFk20

− Fk20 Ã)z+, z+〉ei〈k,θ〉
+ i

∑
k 6=0

〈(〈k, ω〉Fk11
+ ÃFk11

− Fk11 Ã)z+, z̄+〉ei〈k,θ〉

+ i
∑

k

〈(〈k, ω〉Fk02
+ ÃFk02

+ Fk02 Ã)z̄+, z̄+〉ei〈k,θ〉.

From the second and the third equations in (3.5), we see that Fk10, Fk01, Fk20, Fk11, Fk02 satisfy the corresponding equations in
(3.4). �

Let

O+ =


ξ ∈ O :

|〈k, ω〉−1
| ≤
|k|τ

γ
, k 6= 0

‖(〈k, ω〉I + Ã)−1
‖ ≤ K 4

+

|k|τ

γ
,

‖(〈k, ω〉I + Ã ⊗ I + I ⊗ Ã)−1
‖ ≤ K 8

+

|k|τ

γ
,

‖(〈k, ω〉I + Ã ⊗ I − I ⊗ Ã)−1
‖ ≤ K 8

+

|k|τ

γ
, k 6= 0


.

Then the first three equations in (3.4) can be solved in this region. Solvability of the remaining equations in (3.4) is a consequence
of the following elementary result from matrix theory.

Lemma 3.2. Let A, B,C be n×n, m×m and n×m matrices, respectively, and let X be a n×m unknown matrix. Then the matrix
equation

AX − X B = C,

is solvable if and only if Im ⊗ A − B ⊗ In is nonsingular. Moreover,

‖X‖ ≤ ‖(Im ⊗ A − B ⊗ In)
−1
‖ · ‖C‖.

Proof. See [33,49]. �

Note that (Fk20)> satisfies the same equation as Fk20. Hence by uniqueness of solutions, Fk20
= (Fk20)>. Similarly,

Fk02
= (Fk02)>.

Observe that, taking the conjugate transpose of the fourth equation in (3.4) and replacing k with −k, one obtains

(〈k, ω〉I + ( Ã)>)(F (−k)20)> + (F (−k)20)>( Ã)> = i(R(−k)20)>.

Using the fact that ( Ã)> = Ã, (F (−k)20)> = F (−k)20 and (R(−k)20)> = (Rk02)> = Rk02, one has that
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(〈k, ω〉I + Ã)F (−k)20 + F (−k)20 Ã = iRk02
;

i.e., F (−k)20 satisfies the same equation as Fk02. Thus F (−k)20 = Fk02.
In an entirely analogous way one can also show that F(−k)l = Fkl , (F (−k)11)> = Fk11, F (−k)10 = Fk01, F (−k)01 = Fk10 and

F (−k)02 = Fk20. Thus

F̄ = F.

We will now proceed to estimate the norm of X F and to study properties of Φ1
F . To this end, we will need the following

Lemma 3.3. Let A = (ai j (ξ))K×K be an invertible matrix depending differentiably on a parameter ξ ∈ O, and ‖A−1
‖ ≤ L,

‖∂ξ A‖ ≤ M. Then

‖∂ξ A−1
‖ ≤ L2 M.

Proof. Because AA−1
= I , then (∂ξ A)A−1

+ A(∂ξ A−1) = 0, hence ∂ξ A−1
= −A−1(∂ξ A)A−1. Thus

‖∂ξ A−1
‖ ≤ ‖A−1

‖
2
‖∂ξ A‖ ≤ L2 M. �

Lemma 3.4. Let Di = D(r+ + i
4 (r − r+), i

4 s), 0 < i ≤ 4. If

(C1) K 18
+ ≤ ε

−
1
4 ,

then there is a constant c2 > 0 such that

‖X F‖D3,O+ ≤ c2γ
−2(r − r+)

−(2τ+N+1)ε
3
4 .

Proof. From the definition of O+ we see that

sup
ξ∈O+

‖∂ξ 〈k, ω〉‖ ≤ |k|,

sup
ξ∈O+

‖∂ξ (〈k, ω〉I + Ã)‖ ≤ (|k| + K+),

sup
ξ∈O+

‖∂ξ (〈k, ω〉I + Ã ⊗ I + I ⊗ Ã)‖ ≤ (|k| + K 2
+),

sup
ξ∈O+

‖∂ξ (〈k, ω〉I + Ã ⊗ I − I ⊗ Ã)‖ ≤ (|k| + K 2
+).

Then, according to Lemmas 3.1–3.3, we have

|Fkl |O+ ≤ |〈k, ω〉|
−2
|k||P̆kl |O+ ≤ γ

−2
|k|2τ+1

|P̆kl |O+ , k 6= 0, |l| ≤ 1;

‖Fki j
‖O+ ≤ γ

−2 K 9
+|k|

2τ+1
‖Rki j

‖O+ , i 6= j, 1 ≤ i + j ≤ 2;

‖Fk11
‖O+ ≤ γ

−2 K 18
+ |k|

2τ+1
‖Rk11

‖O+ , k 6= 0.

It follows that

1

s2 ‖Fθ‖D3,O+ ≤
1

s2

( ∑
k,|l|≤1

|Fkl | · s
2|l|
· |k| · e|k|(r−

1
4 (r−r+)) +

∑
1≤i+ j≤2

∑
k

‖Fki j
‖ · ‖z+‖ · |k| · e|k|(r−

1
4 (r−r+))

)

≤
γ−2 K 18

+

s2

( ∑
k,|l|≤1

|P̆kl | · s
2|l|
· |k|2τ+2

· e|k|(r−
1
4 (r−r+)) +

∑
1≤i+ j≤2

∑
k

‖Rki j
‖ · ‖z+‖ · |k|2τ+2

· e|k|(r−
1
4 (r−r+))

)
≤ c3γ

−2(r − r+)
−(2τ+N+1)K 18

+ ‖X R‖ ≤ c3γ
−2(r − r+)

−(2τ+N+1)ε
3
4 .

A similar derivation yields

‖FI ‖D3,O+ =
∑
|l|=1

|Fkl |e|k|(r−
1
4 (r−r+)) ≤ c4γ

−2(r − r+)
−(2τ+N+1)ε

3
4 .

‖X F1‖D3,O+ ≤
1
s

(∑
n
‖F1wn

‖ +

∑
n
‖F1w̄n

‖

)
≤

1
s
(‖F1z+

‖ + ‖F1z̄+
‖)

≤ c5γ
−2(r − r+)

−(2τ+N+1)K 18
+ ‖X R1‖ ≤ c5γ

−2(r − r+)
−(2τ+N+1)ε

3
4 .
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‖X F2‖D3,O+ ≤
1
s

(∑
n
‖F2wn

‖ +

∑
n
‖F2w̄n

‖

)
≤

1
s
(‖F2z+

‖ + ‖F2z̄+
‖)

≤ c6γ
−2(r − r+)

−(2τ+N+1)K 18
+ ‖X R2‖ ≤ c6γ

−2(r − r+)
−(2τ+N+1)ε

3
4 .

Putting together the estimates above, Lemma 3.4 follows. �

Now let Diη = D(r+ + i
4 (r − r+), i

4ηs), 0 < i ≤ 4.

Lemma 3.5. If

(C2) c2γ
−2(r − r+)−(2τ+N+1)ε

1
2 < 1,

then

Φt
F : D2η → D3η, −1 ≤ t ≤ 1,

and moreover,

‖DΦt
F − I‖D1η < c7γ

−2(r − r+)
−(2τ+N+1)ε

3
4 .

Proof. Let

‖Dm F‖D,O+ = max

{∥∥∥∥ ∂ |i |+|l|+|α|+|β|F

∂θ i∂ I l∂(z+)α∂(z̄+)β

∥∥∥∥
D,O+

, |i | + |l| + |α| + |β| = m ≥ 2

}
.

We note that F is a polynomial of order 1 in I and of order 2 in z+, z̄+. It thus follows from Lemma 3.4 and Cauchy inequality
(Lemma A.2 in the Appendix) that

‖Dm F‖D2,O+ < c8γ
−2(r − r+)

−(2τ+N+1)ε
3
4 ,

for any m ≥ 2.
Using the integral equation

Φt
F = id +

∫ t

0
X F ◦ Φs

F ds

and Lemma 3.4, one sees easily that Φt
F : D2η → D3η, −1 ≤ t ≤ 1. Moreover, since

DΦt
F = I d +

∫ t

0
(DX F )DΦs

F ds = I d +
∫ t

0
J (D2 F)DΦs

F ds,

where J denotes the standard symplectic matrix, it follows that

‖DΦt
F − I‖ ≤ 2‖D2 F‖ ≤ c7γ

−2(r − r+)
−(2τ+N+1)ε

3
4 ,

where c7 = 2c8. �

3.4. The new Hamiltonian

Let Φ = Φ1
F , s+ = 1

8ηs, D+ = D(r+, s+) and

N+ = e+ + 〈ω+, I 〉 + 〈A+z+, z̄+〉 +
∑
|n|>K+

Ωnwnw̄n,

P+ = P̆+ + Ṕ0 + P̀0,

where

e+ = e + P̆00,

ω+ = ω + P̆0l(|l| = 1),

A+ = Ã + R011,

z+ = (. . . , wn, . . .)|n|≤K+ , z̄+ = (. . . , w̄n, . . .)|n|≤K+ ,

P̆+ =
∫ 1

0
{(1− t){N , F} + R, F} ◦ Φt

F dt + (P̆ − R) ◦ Φ1
F +

∫ 1

0
{Ṕ0 + P̀0, F} ◦ Φt

F dt.
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Then Φ : D+ ×O+→ D and, by Taylor’s second-order formula,

H+ ≡ H ◦ Φ = (N + R) ◦ Φ + (P − R) ◦ Φ

= N + {N , F} + R +
∫ 1

0
(1− t){{N , F}, F} ◦ Φt

F dt +
∫ 1

0
{R, F} ◦ Φt

F dt + (P̆ − R) ◦ Φ1
F + (Ṕ0 + P̀0) ◦ Φ1

F

= N + {N , F} + R + P̆+ + Ṕ0 + P̀0

= N+ + P+ + {N , F} + R − P̆00 − 〈ω
′, I 〉 − 〈R011z+, z̄+〉

= N+ + P+.

We now show that H+ has properties similar to those of H .

Observe that, since ( Ã)> = Ã and (R011)> = R011, we have (A+)> = A+, i.e., A+ is a Hermitian matrix. Then, from the
assumptions on P̆ , we further have that there is a constant c9 > 0 such that

|ω+ − ω|O+ ≤ c9ε, ‖A+ − Ã‖O+ ≤ c9ε.

It thus follows that, if

(C3) c9 K τ+9
+ ε < γ − γ+,

then whenever |k| ≤ K+,

|〈k, ω + P0l〉
−1
| ≤

|〈k, ω〉−1
|

1− |〈k, ω〉−1|c9|k|ε
≤
|k|τ

γ+
, k 6= 0,

‖(〈k, ω + P0l〉I + A+)−1
‖ ≤

‖(〈k, ω〉I + Ã)−1
‖

1− ‖(〈k, ω〉I + Ã)−1‖c9|k|ε
≤ K 4

+

|k|τ

γ+
,

‖(〈k, ω + P0l〉I + A+ ⊗ I + I ⊗ A+)−1
‖ ≤

‖(〈k, ω〉I + Ã ⊗ I + I ⊗ Ã)−1
‖

1− ‖(〈k, ω〉I + Ã ⊗ I + I ⊗ Ã)−1‖c9|k|ε
≤ K 8

+

|k|τ

γ+
,

‖(〈k, ω + P0l〉I + A+ ⊗ I − I ⊗ A+)−1
‖ ≤

‖(〈k, ω〉I + Ã ⊗ I − I ⊗ Ã)−1
‖

1− ‖(〈k, ω〉I + Ã ⊗ I − I ⊗ Ã)−1‖c9|k|ε

≤ K 8
+

|k|τ

γ+
, k 6= 0.

The above implies that, in the next KAM step, small denominator conditions are automatically satisfied when |k| ≤ K+.
Let R(t) = (1− t)(N+ −N )+ t R. Then P+ can be rewritten as

P+ =
∫ 1

0
(1− t){{N , F}, F} ◦ Φt

F dt +
∫ 1

0
{R, F} ◦ Φt

F dt + (P − R) ◦ Φ1
F

=

∫ 1

0
{R(t), F} ◦ Φt

F dt + (P − R) ◦ Φ1
F .

Hence

XP+ =
∫ 1

0
(Φt

F )
∗X{R(t),F}dt + (Φ1

F )
∗X(P−R).

By Lemma 3.5, if

(C4) c7γ
−2(r − r+)−(2τ+N+1)ε

3
4 ≤ 1,

then

‖DΦt
F‖D1η ≤ 1+ ‖DΦt

F − I‖D1η ≤ 2, −1 ≤ t ≤ 1.

Furthermore, by Lemma A.4 (see Appendix) and (3.2), we also have

‖X{R(t),F}‖D2η ≤ c10γ
−2(r − r+)

−(2τ+N+1)η−2ε
7
4 ,

‖X(P−R)‖D2η ≤ c1 ε
5
4 .

Let c0 = max{c1, . . . , c10, c11, c12}, where c11, c12 will be defined later on, and let

ε+ = 4c0γ
−2(r − r+)

−(2τ+N+1)ε
5
4 .
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Then

‖XP+‖D+,O+ ≤ 2c1ε
5
4 + 2c10γ

−2(r − r+)
−(2τ+N+1)ε

5
4 ≤ ε+.

The reality of P+ is verified easily because, if F satisfies F̄ = F and G satisfies Ḡ = G, then their Poisson bracket {F,G} also
satisfies {F,G} = {F,G} = {F,G}.

We now examine the decay property of P̆+. More precisely, write

P̆+ = P̆+(θ, I, z+, z̄+, ξ)+
∑

|n|>K+,αn+βn≥1

P̆+n (θ, I, z+, z̄+, ξ)wαn
n w̄

βn
n .

We will show that

‖P̆+n (θ, I, z+, z̄+, ξ)‖D+,O+ ≤ e−(|n|−K+), |n| > K+.

Since F only involves the normal components wn, w̄n for |n| ≤ K+, so does {N , F}. Therefore,
∫ 1

0 (1− t){{N , F}, F} ◦Φt
F dt only

involves the normal components wn, w̄n for |n| ≤ K+. Since

P̀0 =
∑

n
O(|wn|

3),

we conclude that {P̀0, F} also only involves normal components wn, w̄n for |n| ≤ K+. Consequently, the same is true about∫ 1
0 {P̀0, F} ◦ Φt

F dt . Now, since R is a truncation of P̆ , in order to establish the decay property above, it suffices to consider the

following two terms: (P̆ − R) and
∫ 1

0 {P̆ + Ṕ0, F} ◦ Φt
F dt . Let us consider the first term. Recall that

P̆ = P̆(θ, I, z, z̄, ξ)+
∑

|n|>K ,αn+βn≥1

P̆n(θ, I, z, z̄, ξ)wαn
n w̄

βn
n ,

‖P̆n(θ, I, z, z̄, ξ)‖D(r,s),O+ ≤ e−(|n|−K )
;

Ṕ0 =
∑
n 6=m

αn+βn ,αm+βm≥1
αn+βn+αm+βm≥3

Ṕ0
nm(ξ)w

αn
n w̄

βn
n w

αm
m w̄βm

m ,

‖Ṕ0
nm(ξ)‖D(r,s),O+ ≤ e−|n−m|.

Since R only involves normal components wn, w̄n for |n| ≤ K+, terms corresponding to normal components wn, w̄n for |n| > K+
in P̆ − R are those corresponding to |n| > K+ in P̆ , for which we already have the decay property

‖P̆n(θ, I, z, z̄, ξ)‖D(r+,s+),O+ ≤ e−(|n|−K )
≤ e−(|n|−K+).

It remains to obtain decay estimates for
∫ 1

0 {P̆+ Ṕ0, F}◦Φt
F dt . Once again, we only need to consider terms corresponding to normal

components wn, w̄n for |n| > K+. Note that F is independent of such components and thus so will be∫ 1

0

P̆(θ, I, z, z̄, ξ)+
∑

K<|n|≤K+,αn+βn≥1

P̆n(θ, I, z, z̄, ξ)wαn
n w̄

βn
n , F

 ◦ Φt
F dt.

By the same token,

∫ 1

0


∑

n 6=m,|n|,|m|≤K+
αn+βn ,αm+βm≥1
αn+βn+αm+βm≥3

Ṕ0
nm(ξ)w

αn
n w̄

βn
n w

αm
m w̄βm

m , F

 ◦ Φt
F dt

is independent of normal components wn, w̄n for |n| > K+. It only remains to consider the following terms∫ 1

0

 ∑
|n|>K+,αn+βn≥1

P̆n(θ, I, z, z̄, ξ)wαn
n w̄

βn
n , F

 ◦ Φt
F dt =

∫ 1

0

∑
|n|>K+,αn+βn≥1

{P̆n(θ, I, z, z̄, ξ), F} ◦ Φt
Fw

αn
n w̄

βn
n dt

=

∑
|n|>K+,αn+βn≥1

(∫ 1

0
{P̆n(θ, I, z, z̄, ξ), F} ◦ Φt

F dt

)
wαn

n w̄
βn
n , (3.6)
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and

∫ 1

0


∑

n 6=m,|n|>K+,|m|≤K+
αn+βn ,αm+βm≥1
αn+βn+αm+βm≥3

Ṕ0
nm(ξ)w

αn
n w̄

βn
n w

αm
m w̄βm

m , F

 ◦ Φt
F dt

=

∫ 1

0

∑
|n|>K+


∑
|m|≤K+

αn+βn ,αm+βm≥1
αn+βn+αm+βm≥3

Ṕ0
nm(ξ)w

αm
m w̄βm

m , F

 ◦ Φt
Fw

αn
n w̄

βn
n dt

=

∑
|n|>K+


∫ 1

0


∑
|m|≤K+

αn+βn ,αm+βm≥1
αn+βn+αm+βm≥3

Ṕ0
nm(ξ)w

αm
m w̄βm

m , F

 ◦ Φt
F dt

wαn
n w̄

βn
n . (3.7)

Let

P̃n = P̆n(θ, I, z, z̄, ξ)+
∑
|m|≤K+

αn+βn ,αm+βm≥1
αn+βn+αm+βm≥3

Ṕ0
nm(ξ)w

αm
m w̄βm

m .

We will combine (3.6) and (3.7) to obtain the decay property of

∑
|n|>K+,αn+βn≥1

(∫ 1

0
{P̃n, F} ◦ Φt

F dt

)
wαn

n w̄
βn
n .

By relaxing decay properties of e−(|n|−K ), e−|n−m| to e−(|n|−K+) we have, by Lemma A.3 in the Appendix that

‖{P̃n, F}‖D(r−σ, 1
2 s) ≤ c11γ

−2(r − r+)
−(2τ+N+1)σ−1s−2ε

3
4 e−(|n|−K+).

It follows by Cauchy inequality (Lemma A.2 in the Appendix) that

‖X
{P̃n ,F}

‖D(r−2σ, 1
4 s) ≤ c12γ

−2(r − r+)
−(2τ+N+1)σ−2s−4ε

3
4 e−(|n|−K+).

Therefore, by Lemma 3.5, if

(C5) c11γ
−2(r − r+)−(2τ+N+1)η−2ε

3
4 ≤

1
2 ,

(C6) c12c2(γ
−2(r − r+)−(2τ+N+1)η−2ε

3
4 )2 ≤ 1

2 ,

then∥∥∥∥∥
∫ 1

0
{P̃n, F} ◦ Φt

F dt

∥∥∥∥∥
D(r+,s+)

≤ ‖{P̃n, F} ◦ Φt
F‖D(r+,s+)

≤ ‖{P̃n, F}‖D(r+,s+) + ‖{P̃n, F} ◦ Φt
F − {P̃n, F}‖D(r+,s+)

≤ ‖{P̃n, F}‖D(r+,s+) + ‖X{P̃n ,F}
‖D2η‖Φ

t
F − id‖D1η

≤ c11γ
−2(r − r+)

−(2τ+N+1)η−2ε
3
4 e−(|n|−K+)

+ c12c2(γ
−2(r − r+)

−(2τ+N+1)η−2ε
3
4 )2e−(|n|−K+)

≤ e−(|n|−K+).

Note in this KAM step, the normal components wn, w̄n with K < |n| ≤ K+ are involved but, at this time, the perturbation is of
order O(ε), which means

|wn| ∼ ε ∼ e−|n|. (3.8)

This completes one step of KAM iterations. �
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4. Proof of Theorem C

Let r0, s0, ε0, γ0, K0,O0, H0,N0,P0 be as given in the beginning of Section 3. For each ν = 0, 1, . . . , we will label all index-
free quantities by ν and all +-indexed quantities by ν + 1, in Section 3. This defines, for all ν = 1, 2, . . . , the following sequences:

rν = r0

(
1−

ν+1∑
i=2

2−i

)
,

εν = 4c0γ
−2
ν−1(rν−1 − rν)

−(2τ+N+1)ε
5
4
ν−1,

γν = γ0

(
1−

ν+1∑
i=2

2−i

)
,

sν =
1
8
ην−1sν−1 = 2−3ν

(
ν−1∏
i=0

εi

) 1
4

s0, ην = ε
1
4
ν ,

Kν = 5Kν−1,

Dν = D(rν, sν),

D̃ν = D

(
rν+1 +

1
4
(rν − rν+1),

1
4
ηνsν

)
,

Hν = H̄ν = Nν + Pν,
Nν = N̄ν = eν + 〈ων(ξ), I 〉 + 〈Aνzν, z̄ν〉 +

∑
|n|>Kν

Ωnwnw̄n,

Oν =


ξ ∈ Oν−1 :

|〈k, ων−1〉
−1
| ≤
|k|τ

γν−1
, k 6= 0

‖(〈k, ων−1〉I + Ãν−1)−1
‖ ≤ K 4

ν

|k|τ

γν−1

‖(〈k, ων−1〉I + Ãν−1
⊗ I + I ⊗ Ãν−1)−1

‖ ≤ K 8
ν

|k|τ

γν−1

‖(〈k, ων−1〉I + Ãν−1
⊗ I − I ⊗ Ãν−1)−1

‖ ≤ K 8
ν

|k|τ

γν−1
, k 6= 0


,

where

Ãν−1
=

(
Aν−1 0

0 Ωn

)
Kν−1<|n|≤Kν

.

4.1. Iteration lemma

The preceding analysis may be summarized in the following

Lemma 4.1. Given γ to be sufficiently small, there is an ε sufficiently small such that the following holds for all ν = 0, 1, . . . .

(a) Hν is real analytic on Dν ×Oν ,

Nν = N̄ν = eν + 〈ων(ξ), I 〉 + 〈 Ãνzν+1, z̄ν+1
〉 +

∑
|n|>Kν+1

Ωnwnw̄n,

Pν = P̄ν = P̆ν + Ṕ0 + P̀0,

and moreover,

|ων+1 − ων |Oν ≤ c0εν,

‖ Ãν+1
− Ãν‖Oν ≤ c0εν,

‖XPν‖Dν ,Oν ≤ εν,

P̆ν = P̆ν(θ, I, zν, z̄ν, ξ)+
∑

|n|>Kν ,αn+βn≥1

P̆νn (θ, I, zν, z̄ν, ξ)wαn
n w̄

βn
n ,

Ṕ0 =
∑
n 6=m

αn+βn ,αm+βm≥1
αn+βn+αm+βm≥3

Ṕ0
nm(ξ)w

αn
n w̄

βn
n w

αm
m w̄βm

m ,
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P̀0 =
∑

n
O(|wn|

3),

with

‖P̆νn (θ, I, zν, z̄ν, ξ)‖Dν ,Oν ≤ e−(|n|−Kν ),

‖Ṕ0
nm(ξ)‖Dν ,Oν ≤ e−|n−m|.

(b) There is a symplectic transformation

Φν : D̃ν ×Oν+1 → Dν

with

‖DΦν − I‖Dν×Oν+1 ≤ εν

such that

Hν+1 = H̄ν+1 = Hν ◦ Φν .

Proof. It suffices to verify conditions (C0)–(C6) for all ν = 0, 1, . . . .
By the choice of s0, the condition (C0) clearly holds for ν = 0. By induction, suppose it hold for some ν − 1. Then it is easy to

see that one can make γ = γ0 small enough so that

sν =
1
8
ην−1sν−1 <

1
8
ε

5
4
ν−1 < εν .

Hence (C0) holds for all ν.
To verify the conditions (C1)–(C6), we note that these easily follow from conditions:

(D1) Kν+1 ≤ ε
−

1
80

ν ,

(D2) c0γ
−2
ν (rν − rν+1)

−(2τ+N+1)ε
1
4
ν ≤

1
2

for all ν = 0, 1, . . . .
Let us first take ε (hence ε0) sufficiently small such that

ε0 < min

{
γ 10

0 r5(2τ+N+1)
0

25(2τ+N+1)c5
0

(Ψ(r0))
−1,

δ

2

}
,

where

Ψ(r0) =

∞∏
i=1

[(ri−1 − ri )
−5(2τ+N+1)

]
( 4

5 )
i

which is easily seen to be well-defined. Then

c0γ
−2
0 (r0 − r1)

−(2τ+N+1)ε
1
4
0 ≤

1
2
,

i.e., (D2) holds for ν = 0. Since K0 = −
5
4 ln ε, we see that (D1) also holds for ν = 0.

Using an induction argument, one can show that, in fact, for any ν ≥ 1,

c0γ
−2
ν (rν − rν+1)

−(2τ+N+1)ε
1
4
ν = c0γ

−2
ν (rν − rν+1)

−(2τ+N+1)(4c0γ
−2
ν (rν−1 − rν)

−(2τ+N+1)ε
5
4
ν−1)

1
4

≤ (24(2τ+N+1)c5
0γ
−10
ν (rν−1 − rν)

−5(2τ+N+1)ε
5
4
ν−1)

1
4 ≤ (24(2τ+N+1)c5

0γ
−10
0 Ψ(r0)ε0)

1
4 (

5
4 )
ν

≤

(
r5(2τ+N+1)

0

22τ+N+1

) 1
4

(
5
4

)ν
≤

1
2
,

and

Kν+1 = 5ν+1 K0 ≤ ε
−

1
80

ν ,

i.e., (D1) and (D2) hold true. �
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4.2. Convergence

Let Ψ ν
= Φ0 ◦ Φ1 ◦ · · · ◦ Φν−1, ν = 1, 2, . . . . An induction argument shows that Ψ ν

: D̃ν ×Oν+1 → D0 and

H0 ◦Ψ ν
= Hν = Nν + Pν

for all ν = 1, 2, . . . .
Let Õ = ∩∞ν=0Oν . Using Lemma 4.1 and standard arguments (e.g. [31,38]), one can conclude that Hν, eν,Nν,Pν,Ψ ν and ων

converge uniformly on D( 1
2r0, 0)× Õ to, say, H∞, e∞, N∞, P∞, Ψ∞ and ω∞, respectively, in which case it is clear that

N∞ = e∞ + 〈ω∞, I 〉 + 〈A∞z∞, z̄∞〉.

Since

εν = 4c0γ
−2
ν−1(rν−1 − rν)

−(2τ+N+1)ε
5
4
ν−1 ≤ (4c0γ

−2
0 Ψ(r0)ε0)

( 5
4 )
ν

,

we have, by Lemma 4.1, that

XP∞ |D( 1
2 r0,0)×Õ ≡ 0.

Let Φt
H denote the flow of any Hamiltonian vector field X H . Since H0 ◦Ψ ν

= Hν , we have

Φt
H0
◦Ψ ν

= Ψ ν
◦ Φt

Hν . (4.1)

The uniform convergence of Ψ ν and X Hν implies that one can pass the limit in the above and conclude that

Φt
H0
◦Ψ∞ = Ψ∞ ◦ Φt

H∞ ,

on D( 1
2r0, 0)× Õ. It thus follows that

Φt
H0
(Ψ∞(TN

× {ξ})) = Ψ∞Φt
N∞(T

N
× {ξ}) = Ψ∞(TN

× {ξ}),

for all ξ ∈ Õ. Hence Ψ∞(TN
× {ξ}) is an embedded invariant torus of the original perturbed Hamiltonian system at ξ ∈ Õ. The

frequencies ω∞(ξ) associated with Ψ∞(TN
×{ξ}) are slightly deformed from the unperturbed ones, ω(ξ), and moreover, it follows

from the constancy of the normal matrix A∞ = A∞(ξ) that the invariant torus Ψ∞(TN
× {ξ}) is linearly stable.

Let θ ∈ T N and Ψ(θ + ω̃(ξ)t, ξ) = (θ + ω̃(ξ)t, I (t), {wn(t)}). Then it follows from (3.8) that |wn| ∼ e−|n|. �

4.3. Measure estimates

For each ν = 0, 1, 2, . . . , recall that, for |k| ≤ Kν+1, small denominator conditions are automatically satisfied. For |k| > Kν+1,
let us consider the most complicated case, 〈k, ων〉I + Ãν ⊗ I − I ⊗ Ãν . Since Ãν is Hermitian with dim( Ãν) ≤ Kν+1,
〈k, ων〉I + Ãν ⊗ I − I ⊗ Ãν is also Hermitian with dim(〈k, ων〉I + Ãν ⊗ I − I ⊗ Ãν) ≤ K 2

ν+1.

Lemma 4.2. Let µ1, . . . , µK be the eigenvalues of a Hermitian matrix A and let P with P̄>P = I be such that A = P>ΛP, with
Λ = (µ j )1≤ j≤K . If

min{|µ1|, . . . , |µK |} ≥ l,

then

‖A−1
‖ ≤

K 2

l
.

Proof. Since P̄>P = I , we have ‖P‖ ≤ K , and hence

‖A−1
‖ ≤ ‖P‖2‖Λ−1

‖ ≤
K 2

l
. �

Let µ be an eigenvalue of (〈k, ων〉I + Ãν ⊗ I − I ⊗ Ãν). According to Lemma 4.2, as long as |µ| ≥ γν
|k|τ |m|2|n|2

for some
|m|, |n| ≤ Kν+1, one will have

‖(〈k, ων〉I + Ãν ⊗ I − I ⊗ Ãν)−1
‖ ≤ K 8

ν+1
|k|τ

γν
.
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As a consequence of this, we need to exclude the following parameter set

Rν1
kmn =

{
ξ ∈ Oν−1 : |µ| <

γν

|k|τ |m|2|n|2

}
.

Similarly, we will also need to exclude the following parameter sets

Rν2
k =

{
ξ ∈ Oν−1 : |〈k, ων〉| <

γν

|k|τ

}
,

Rν3
kn =

{
ξ ∈ Oν−1 : |ζ | <

γν

|k|τ |n|2

}
,

Rν4
kmn =

{
ξ ∈ Oν−1 : |λ| <

γν

|k|τ |m|2|n|2

}
,

where ζ , λ denote eigenvalues of (〈k, ων〉I + Ãν), (〈k, ων〉I + Ãν ⊗ I + I ⊗ Ãν), respectively.
Now consider the resonant sets

Rν =
⋃

|k|>Kν+1

 ⋃
|m|,|n|≤Kν+1

Rν1
kmn

⋃Rν2
k

⋃ ⋃
|n|≤Kν+1

Rν3
kn

⋃ ⋃
|m|,|n|≤Kν+1

Rν4
kmn

⋃Rν5
k

 ,
where

Rν5
k =

ξ ∈ Oν−1 :

|〈k, ων〉 + Ων
n | <

γν

|k|τ |n|2
, |n| > Kν+1

|〈k, ων〉 + Ων
m ± Ων

n | <
γν

|k|τ |m|2|n|2
, |m| ≤ Kν+1, |n| > Kν+1

|〈k, ων〉 + 2Ωn| <
γν

|k|τ |n|2
, |n| > Kν+1

 .
It is clear that

O \ Õ ⊆
⋃
ν≥0

Rν .

Lemma 4.3. For fixed k and ν, there is a constant C1 > 0 such that∣∣∣∣∣∣
 ⋃
|m|,|n|≤Kν+1

Rν1
kmn

⋃Rν2
k

⋃ ⋃
|n|≤Kν+1

Rν3
kn

⋃ ⋃
|m|,|n|≤Kν+1

Rν4
kmn

⋃Rν5
k

∣∣∣∣∣∣ ≤ C1
γ

|k|τ+1 .

Proof. Let µ is an eigenvalue of the Hermitian (〈k, ων〉I + Ãν ⊗ I − I ⊗ Ãν). It is well-known that µ depends on ξ smoothly and
there exists a unit eigenvector ψ associated with µ which smoothly depends on ξ (see e.g. [17]). It follows that

µ = 〈(〈k, ων〉I + Ãν ⊗ I − I ⊗ Ãν)ψ,ψ〉,

and hence

∂ξµ = 〈∂ξ (〈k, ων〉I + Ãν ⊗ I − I ⊗ Ãν)ψ,ψ〉.

Thus

|∂ξµ| ≥ |〈∂ξ (〈k, ω0〉 + Ω0
m − Ω0

n )ψ,ψ〉| − ε0|k| = O(|k|).

The cases forRν2
k ,Rν3

kn ,Rν4
kmn ,Rν5

k can be handled in an entirely analogous way. Thus∣∣∣∣∣∣
 ⋃
|m|,|n|≤Kν+1

Rν1
kmn

⋃Rν2
k

⋃ ⋃
|n|≤Kν+1

Rν3
kn

⋃ ⋃
|m|,|n|≤Kν+1

Rν4
kmn

⋃Rν5
k

∣∣∣∣∣∣
≤ C1

∑
m,n

γ

|k|τ+1|m|2|n|2
≤ C1

γ

|k|τ+1 .

This proves the lemma. �
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Lemma 4.4.∣∣∣O \ Õ∣∣∣ ≤ ∣∣∣∣∣⋃
ν≥0

Rν
∣∣∣∣∣ = O(γ ).

Proof. Let τ ≥ N . By Lemma 4.3, we have that∣∣∣O \ Õ∣∣∣ ≤ ∣∣∣∣∣⋃
ν≥0

Rν
∣∣∣∣∣ = O

∑
ν≥0

∑
|k|>Kν+1

γ

|k|τ+1

 = O

(∑
ν≥0

γ

Kν+1

)
= O(γ ). �

The measure estimate is now complete.
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Appendix

Lemma A.1.

‖FG‖D(r,s),O ≤ ‖F‖D(r,s),O‖G‖D(r,s),O.

Proof. Since

(FG)klαβ =
∑

k′,l ′,α′,β ′
Fk−k′,l−l ′,α−α′,β−β ′Gk′l ′α′β ′ ,

one has that

‖FG‖D(r,s),O = sup
‖w‖<s
‖w̄‖<s

∑
k,l,α,β

|(FG)klαβ |s
2l
|wα||w̄β |e|k|r

≤ sup
‖w‖<s
‖w̄‖<s

∑
k,l,α,β

∑
k′,l ′,α′,β ′

|Fk−k′,l−l ′,α−α′,β−β ′Gk′l ′α′β ′ |s
2l
|wα||w̄β |e|k|r

≤ ‖F‖D(r,s),O‖G‖D(r,s),O. �

Lemma A.2 (Generalized Cauchy Inequalities).

‖Fθ‖D(r−σ,s) ≤
1
σ
‖F‖D(r,s),

‖FI ‖D(r, 1
2 s) ≤

4

s2 ‖F‖D(r,s),

‖Fw‖D(r, 1
2 s) ≤

2
s
‖F‖D(r,s),

‖Fw̄‖D(r, 1
2 s) ≤

2
s
‖F‖D(r,s).

Proof. See [38]. �

Let {·, ·} denote the Poisson bracket, i.e., for smooth functions F,G,

{F,G} =

〈
∂F

∂ I
,
∂G

∂θ

〉
−

〈
∂F

∂θ
,
∂G

∂ I

〉
+ i

∑
n

(
∂F

∂wn

∂G

∂w̄n
−
∂F

∂w̄n

∂G

∂wn

)
.

Lemma A.3. There exists a constant c > 0 such that if

‖Fn‖D(r,s) < e−|n|, ‖G‖D(r,s) < ε,

then

‖{Fn,G}‖D(r−σ, 1
2 s) < cσ−1s−2

‖Fn‖D(r,s)‖G‖D(r,s) ≤ cσ−1s−2εe−|n|.
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Proof. By Lemmas A.1 and A.2,

‖〈Fn I ,Gθ 〉‖D(r−σ, 1
2 s) < 4σ−1s−2

‖Fn‖ · ‖G‖,

‖〈Fnθ ,G I 〉‖D(r−σ, 1
2 s) < cσ−1s−2

‖Fn‖ · ‖G‖,∥∥∥∥∥∑m Fnwm
Gw̄m

∥∥∥∥∥
D(r, 1

2 s)

≤

∑
m
‖Fnwm

‖D(r, 1
2 s)‖Gw̄m‖D(r, 1

2 s)

≤ ‖Fnw‖D(r, 1
2 s)‖Gw̄‖D(r, 1

2 s)

≤ 4s−2
‖Fn‖ · ‖G‖,∥∥∥∥∥∑m Fnw̄m

Gwm

∥∥∥∥∥
D(r, 1

2 s)

≤

∑
m
‖Fnw̄m

‖D(r, 1
2 s)‖Gwm‖D(r, 1

2 s)

≤ ‖Fnw̄‖D(r, 1
2 s)‖Gw‖D(r, 1

2 s)

≤ 4s−2
‖Fn‖ · ‖G‖.

It follows that

‖{Fn,G}‖D(r−σ, 1
2 s) < cσ−1s−2

‖Fn‖D(r,s)‖G‖D(r,s) ≤ cσ−1s−2εe−|n|. �

Lemma A.4. There exists a constant c > 0 such that if

‖X F‖D(r,s) < ε′, ‖XG‖D(r,s) < ε′′,

for some ε′, ε′′ > 0, then

‖X{F,G}‖D(r−σ,ηs) < cσ−1η−2ε′ε′′,

for any 0 < σ < r and 0 < η � 1. In particular, if η ∼ ε
1
4 , ε′ ∼ ε, ε′′ ∼ ε

3
4 , then

‖X{F,G}‖D(r−σ,ηs) ∼ ε
5
4 .

Proof. See [23]. �
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