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Abstract

A classification of D-branes in Type IIB Op~ orientifolds and orbifolds in terms
of Real and equivariant KK-groups is given. We classify D-branes intersecting
orientifold planes from which are recovered some special limits as the spectrum
for D-branes on top of Type I Op~ orientifold and the bivariant classification
of Type I D-branes. The gauge group and transformation properties of the
low energy effective field theory living in the corresponding unstable D-brane
system are computed by extensive use of Clifford algebras. Some speculations
about the existence of other versions of KK-groups, based on physical insights,
are proposed. In the orbifold case, some known results concerning D-branes
intersecting orbifolds are reproduced and generalized. Finally, the gauge theory
of unstable systems in these orbifolds is recovered.
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1 Introduction

Topological methods in physics have always been relevant in order to describe static
stable configuration of finite energy in field and string theories. D-branes have RR
charge and they are source of RR fields. Both of them are classified by K-theory in all
different theories. The recipe is that the K-theory is described by the classes of pairs of
gauge bundles over the worldvolume of the D9-D9 pair of the Type IIB string theory
or on the non-BPS D9 of the Type ITA theory. This description classifies all lower
dimensional D-branes coming from tachyon condensation called descendent branes.
However the inverse process of constructing higher dimensional D-branes from the
lowest dimensional unstable systems of D-instantons is also possible. This description
is given by using K-homology.

The incorporation of the K-homology description in the context of Matrix theory
was done in [I]. This was called the K-matrix theory and is based in the process involv-
ing configurations of non-BPS instanton in Type IIA string theory and D-instantons -
anti D-instantons in Type IIB theory. From these configurations, higher-dimensional D-
branes can be constructed and they are classified (through their worldvolumes) by the
K-homology groups. The D-branes are described and thus represented by equivalence
classes of Connes spectral triples (analytical data) used in noncommutative geometry.
This equivalence is physically defined in terms of the gauge equivalence and the charge
conservation. For different approaches of K-homology to D-brane classification see
[2, 13[4, [5].

K-theory and K-homology are dual one of each other and it is compelling to use
the Kasparov (complex) KK-theory, which is a generalization of both theories. This
was done in [I] where the procedure of the construction of ascendent-descendent brane
configuration was implemented on the product space-time X xY with the world-volume
of the unstable D-brane wrapped on Y. The D-branes are classified in a natural way
by the groups KK*(X,Y). In [6] it was shown that D-branes of the Type I theory are
classified by (the real/Orthogonal) KKO*(X,Y).

Similarly to K-homology, there are several approaches for the KK-theory application
in describing D-brane physics [7, 8, [4]; but we will concentrate in the approach from
.

Moreover, in the present paper we extend these results by showing that orientifolds
are classified by the Real KK-group KKR’(X,Y') and orbifolds by the equivariant KK-
group KK%(X,Y). In addition, we propose based on physical arguments, the existence
of different versions of the KK bifunctor which; as far as the authors knowledge have
not been discussed in the literature before. For all these theories, the spectrum is
correctly obtained. We also give an application to exotic orientifolds.

This paper is organized as follows. In Sec. 2 a brief account of the classification
of D-branes through K-theory, K-homology and KK-theory is given. Sec. 3 is devoted
to describe Dd-branes in orientifold backgrounds by using the Real KKR-theory. In
here we find general formulas which involve the two cases ¢ < p and p < q. Here p is
the dimension of the orientifold plane Op and ¢ is spatial dimension of the unstable
Dg-brane. Sec. 4 analyzes the theory on the unstable D-brane using the information
provided by the Clifford algebras involved in the definition of the KKR bifunctor.



To be more specific we will describe in some detail three important examples. The
rest of the cases is summarized in a table. Sec. 5 is devoted to make a proposal for
extending the classification of D-branes in orientifolds to other theories such as the
Type IIB with Op™ (quaternionic) and the IIB with O9" (with gauge group USp(32))
orientifold in the context of Kasparov KK-theory. At the end of this section, we explain
an application of our formalism to exotic orientifolds. D-branes in orbifold singularities
with KKg-theory are discussed in Sec. 6. Finally in Sec. 7 we give our final remarks.
Four appendices collect a series of formal results about KK-theory.

2 Classification of D-branes in orientifold planes

2.1 D-branes and K-theory

In Type II superstring theories D-branes are constructed as solitons on unstable sys-
tems either formed by pairs of brane-antibranes or by single unstable D-branes [9].
This means that any configuration of D-brane charges is realized as a gauge field con-
figuration on a stack of (sufficiently) many D9-D9 branes in Type IIB, or non-BPS
DO9-branes in Type IIA by open string tachyon condensation. This was interpreted as
a way to classify Dd-brane charges by gauge bundles on the worldvolume of the D9-
branes [I0]. Hence, D-brane charges turn out to be elements of a group constructed
from equivalence classes of vector bundles, namely K-theory.

In Type IIB theory Dd-brane charges are classified by the so called complex K-
theory group, which is valuated on the transversal space (with respect to the unstable
syste to Dd. In particular, the K-theory group classifying a Dd-brane in Type
1B is given by KU(R??) which renders the Dd-brane as a soliton constructed by
the pair D9-D9. One can instead consider a Dd-brane as a soliton constructed from an
unstable system formed by Dg-branes (¢ > d). The groups classifying the corresponding
vector bundles transversal to the Dd-brane worldvolume, in a nine-dimensional or ¢-
dimensional unstable system, are isomorphic as expected from Bott periodicity and are
given by KU (R%~%) and KU }(R?%9) respectively.

D-brane classification by K-theory is a little more elaborated once we introduce
discrete actions on the background such as orientifolds or orbifolds. For instance,
Ramond-Ramond (RR) fields on which D-branes in Type I theory are charged, have a
smaller number of degrees of freedom due to the orientifold projection. This reduces
the gauge group on the D-brane to be orthogonal or symplectic implying that D-
branes are classified by orthogonal K-theory groups of the corresponding transversal
spaces. Specifically, Dd-branes in type I are classified by KO(R?~) which points out
the presence of non-BPS states carrying discrete topological charge [11]. These Dd-
branes can also be thought of as solitonic constructions from unstable pairs of D9-D9
branes on top of an orientifold nine-plane O9~. In a similar context as before, we can
try to understand the construction of Type I D-branes from lower-dimensional unstable
branes (which is justified since in general, super Yang-Mills theories in 941 dimensions

!Throughout this paper, what we refer as “K-theory group” is really the reduced K-theory group
of the compactified space.



are non-renormalizable). In fact, it is possible to condense open string tachyons from
a pair of Dg-Dq on top of the orientifold nine-plane in order to construct Dd-branes,
which are classified by KO9~1(R?~¢) [12].

The situation becomes much more interesting by considering the presence of lower
dimensional orientifolds Op~. Classification of Dd-branes in such backgrounds was
given in [13] and it strongly depends on which type of orientifold background we are
taking into account. It turns out that for an orientifold with a positive squared invo-
lution (72 = 1) and (—1)* =1 (i.e., for p = 1 mod 4) the real K-theory group which
classifies Dd-branes is K R(R%7P~%) where

RO-Pp—d _ (RQ—p/Q -Ig_p) > ]Rp—d’ (2.1)

is the transversal space to the Dd-brane. The world-sheet operator €2 inverts the ori-
entation of the string while the involution Zy_, maps transversal coordinates to the
orientifold z; to —x;. Notice that Dd-branes on top of an orientifold plane Op~ are
obtained as well by pairs of D9-D9 in which the open string tachyons have been con-
densed. The corresponding construction from lower (than nine) dimensional unstable
systems will be studied in the next section.

So far we have reviewed constructions of Dd-branes from unstable Dg-branes (¢ >
d). This means that each element of K-theory describes a lower-dimensional (than
q) Dd-brane obtained by tachyon condensation from unstable branes generalizing the
D-brane descent relations (see [9] and references therein).

However, it is also possible to elucidate the above construction from the tree-level
action of an unstable brane. Such an action is constructed in the Boundary String
Field Theory (BSFT) to the superstring [I4]. For instance, the action of an unstable
DO9-brane in Type ITA is given by

S =T, / Az ( (In 2)a'e"T"/19"T8,T + e_T2/4> (2.2)

from which a solution for the equations of motion for the tachyon field is
T =X, (2.3)

where p is a constant and X denotes some coordinate of the spacetime manifold.

By substituing this kink solution into the unstable D9-brane action, we get the
action of a stable D8-brane (for ;1 — o0). The argument can be generalized to show
that from the action for N non-BPS D9-branes, with N large enough

9—d
T(X) =y X' (2.4)

where {v;,7;} = 28,5, is also a solution for the equations of motion, giving rise to a
Dd-brane. Notice that this expression for the tachyon field corresponds to the Atiyah-
Bott-Shapiro (ABS) construction (see for instance [10} [15]), which plays a relevant role
in the classification of D-branes by K-theory.



For the case of an unstable pair of brane anti-brane, the complete tachyon field is

given by
F:(O TT) ZXZ(O %). (2.5)

Hence, roughly speaking, Dd-branes are constructed by tachyon condensation from
higher-dimensional unstable branes and they are classified by the gauge bundles on
their corresponding transversal spaces.

2.2 D-branes and K-homology

In the context of Matrix theory it is possible to construct Dd-branes not from higher-
dimensional unstable brane systems, but from infinitely many lower-dimensional D-
branes. The idea was developed in [16] in order to construct commutative D-branes,
which turn out to be classified by K-homology [I] in the case where the lower dimen-
sional D-branes are D-instantons. The basic idea is as follows: by taking T-duality (in
the euclidean space) on the nine spatial coordinates, the action (2.2)) for the non-BPS
D9-brane in Type ITA, generalized to N D9-branes for N large enough, gives

S=T1Tryxn <€_T2/4(1 -G [Cbua T]2 - 027T2[¢ua Cbu]z)) ) (2'6)

which is the action for N D(-1)-branes and where the ¢, are scalar fields representing
the transverse position as a function on the coordinates x".

The corresponding equations of motion for the tachyon field have as a solution
(provided p? = 1/cy)

2T

T= /1/2p

1

27TO/1/2

¢0 x(bz: ) (121779% (27)
where the operators x and p are identified with the transversal coordinates and mo-
mentum of the non-BPS D(-1)-branes. Plugging this tachyon kink solution (in momen-
tum) back into the D(-1)-branes action provides a DO-brane action, whose position is
specified by the fields ¢; = 0. The argument can be generalized to construct higher-
dimensional Dd-branes in Type IIB theory from an infinite number of D(-1)-D(—1)
pairs, in which case the tachyon and scalar fields are

d
T:,Uzpj®7j,

J=0

(bgl) = ¢1(2) = xiv (7' =0, 7d>7 (28)



with 4 — oo, and 4’ being the 28] x 2[5! gamma matrices in d dimensions. The
superindices in ¢ stand for the instanton brane and antibrane, respectively [16].
It follows then, that the tachyon matrix F' can also be written as

d
F=p> pold (2.9)
j=0
with
. 0 AT
J — .
r _<7] 0 ) (2.10)

However, since the tachyon field 7' (which comes from the oriented string between
the instanton brane-antibrane system), is not projected out by GSO projection, repre-
sented by the operator (—1)t = ( 9 é
condition F' = F'T. This fact plays an important role in the next the sections.

Let us however, return to the question of classification of Dd-branes created by
brane-anti-brane instantons. As in the usual case of tachyon condensation from higher
dimensional non-BPS D-branes, the construction of D-branes from unstable D(-1)-
branes leads to their classification in terms of the so called K-homology K, (X) [1I,
which roughly speaking, is the dual to the K-theory group K"(X) in the sense that it
has a natural pairing with the K-theory group. Instead of classifiying vector bundles
on the transverse space to a Dd-brane as in K-theory, K-homology classifies vector
bundles on the worldvolume of the extended Dd-branes constructed from unstable
D(—1)-branes F. This is generalized to construct a Dd-brane from an unstable Dg-
brane (¢ < d) with a tachyon configuration given by

) , the tachyon matrix F' satisfies the self-dual

d+q
F=p) poli (2.11)

Jj=q+1

2.3 Kasparov KK-theory

By virtue of the material revisited so far, it is then natural to combine the above
two setups in order to construct a Dd-brane by a kind of combination of tachyon

2More precisely, the topological K-homology of any locally compact space X classifies triples
(M, E, ¢), where

e M is a compact spinc-manifold without boundary.
e [ is a complex vector bundle over M.
e ¢: M — X is an embedding of M in X.

The equivalence relations on the triples (M, E, ¢) that define the K-homology of X have a nice
physical interpretation in terms of D-brane processes. In fact the components of the triples (M, E, ¢)
are easily interpreted as the worldvolume manifold M of the D-brane, E is the Chan-Paton bundle
on the worldvolume M of the D-brane and ¢ is the embedding of the D-brane worldvolume in the
ambient spacetime X. For more details see [T}, 3].



condensation from higher- and lower-dimensional D-branes. For branes in Type II
theories, the extension was given in [I], together with a proposal to classify them.

In this scenario, a Dd-brane located in coordinates zV, -, 2975 29! ... 29t ig
constructed roughly speaking by tachyon condensation from an unstable Dg-brane
located in coordinates z°, - - - | 29 with a tachyon configuration given by

s d+q
F=pY X'@Ti+p Y poll (2.12)
=0 Jj=q+1

The “part” of the Dd-brane localized inside the unstable Dg-brane is constructed
by tachyon condensation as in Sen’s descent relations, while the rest can be seen as
constructed from unstable Dg-branes as in section 2.2.

It turns out that the relevant group which classifies Dd-branes constructed as in the
above configuration is Kasparov KK-theory [17, [1]. Let us first of all briefly summa-
rize some important aspects about KK-theory (see Apendix A for a more formal and
detailed description).

KK-theory is a generalization of both K-theory and K-homology, in the sense that
while both K-theory and K-homology are functors from the category of locally compact
Hausdorff topological spaces to the category of abelian groups, (i.e. classify classes of
vector bundles on the transverse space and in the worldvolume of a D-brane, respec-
tively), KK-theory is a bifunctor between these categoriesﬁ [T7, 18, 19} 20]. The bi-
functor assigns to each pair (X,Y) of locally compact topological spaces some abelian
group denoted K K~"(X,Y’) for any integer n. Here X denotes the part of the world-
volume of the D-brane (extended outside the Dg-brane system) created from lower
dimensional branes and Y is the worldvolume of the unstable Dg-brane from which
a D-brane is created by tachyon condensation (as in the descent relations). Given
such identification of the topological spaces X and Y, it is then expected to get some
relations between KK-theory and both K-theory and K-homology groups. Indeed, if
X = {pt}, it means we do not have a D-brane (extended in the transverse space of the
Dg-brane system) created from lower dimensional branes. This implies that Dd-branes
are entirely classified by K-theory. Then

KE"(pt,Y) = K~"(Y). (2.13)

Similarly, for a brane fully extended outside the unstable Dg-brane from which it
was constructed (via condensation of a tachyon field as in Eq.(212)), the space Y is
the point-space implying that

KE(X,pt) = K, (X). (2.14)

Now, as in the case of K-theory which is the set of equivalence classes of vector
bundles, KK-theory is the set of equivalence classes of Kasparov triplets (H, ¢, T). In

3In fact, all the K-functors mentioned above have as domain the full category of C*-algebras
which includes the category of locally compactHausdorff spaces as a subcategory by assigning to each
locally compact Hausdorff space X the C*-algebra of continuous C-valued functions on X vanishing
at infinity. Moreover, it can be shown that each commutative C*-algebra is of this form, X being the
space of characters of the algebra.



pedestrian words, H is the set of all Chan-Paton gauge fields living on the worldvolume
of the unstable Dg-brane (¢ and T are as usual the transversal position and tachyon
fields). In this sense, a zero class representing the vacuum is gathered by a tachyon
field 7' which condensates trivially (i.e., without a kink solution in momentum or
spatial configurations) implying that 72 = 1 (T has been normalized) and T and ¢
depending on non-conjugate position and momentum, i.e. [T, ¢| = 0. For the case in
which the tachyon condensates in a non-trivial way, it is said that the triplet is non-
trivial, representing a D-brane configuration in which the tachyon field configuration
is given by Eq.(212). Hence, KK-theory is the set of triplets which are equivalent up
to the addition of a zero-class triplet. It is, as in the case of K-theory, an equivalence
which preserves the RR charge. A formal presentation of KK-theory groups is given in
Appendix A. However, for a more detailed explanation about the interpretation of the
elements defining the Kasparov modules and the equivalence relations involved in the
definition of the KK-groups, the reader is referred to [I], in which a detailed discussion
on some subtleties in the choice of the spacetime and the tachyon in the Kasparov
modules is considered.

2.3.1 D-branes and KK-theory

Let us consider the simple case of a Dd-brane in Type IIB(A) string theory, constructed
from unstable Dg-branes. In particular, for a configuration of a Dd-brane located in
coordinates 20, - -, 277% , x9t ... 293 the spaces X and Y are given by R*9+% and
R9~9+% from which the relevant KK-theory group is given b

KKO(—l)(Rd—Q-FS’RE)—Q*‘S) = KO(_l)(Rg_d). (2.15)

It is important to stress out that, as mentioned in Appendix B, it is possible to extract
information of the system through the relation with complexified Clifford algebras CI"
given by

KK ™X,Y) = KK(Cy(X),Co(Y)® CI™), (2.16)

where Cy(X) (Co(Y)) denotes the algebra of complex valued (real valued when dealing
with orthogonal KK-groups) continuous functions in X (Y) vanishing at infinity. Such
relation with Clifford algebras shall become very important in our description of Dd-
branes in more general backgrounds.

The next natural step is to classify Dd-branes in Type I theory, i.e., in the presence
of a negative RR charged orientifold nine-plane O9~. This was done in [6], where the
authors proposed that the relevant group for such classification is the real Kasparov bi-
functor, denoted as K KO(X,Y'), in which roughly speaking, all complex fields become

4In [2I3) we interpreted Y as the worldvolume of the unstable Dg-brane for some integer n; but
similar to K-theory, Y is actually the transverse space (with respect to the Dg-brane) of the part of the
Dd-brane localized inside the Dg-brane. This is achieved by making use of the Atiyah-Bott-Shapiro
construction in K-theory. Moreover a similar meaning is assigned to Y”, i.e. is the transverse space of
the part of the Dd-brane extended inside the unstable Dg-brane system, but in this case the transverse
space is relative to an unstable D9 system and consequently n in (2I3) is changed depending on the
string theory we are dealing with. The KK-theory prescription in terms of Y and Y’ are equivalent
as will be shown through out this paper.



real by the orientifold nine projection (for a formal description and for more details,
see Appendix B).

Let us consider the Dd-brane in an O9~-plane background extended again in the
coordinates 0, - 297% 91 ... 2?5 In this situation the Kasparov KK-theory
group turns out to be orthogonal (real) given by KKO(R4-9+s R9-4+) Using the

isomorphisms from Eq.(B.5), the above group reduces to
KKOTYR¥™74 R*) = KO (R"™%) = KO(R*™), (2.17)

as expected [I2]. The relation with real Clifford algebras CI** is given in a similar
context as in Type II

KKOT™ (X,Y) = KKO(Cy(X),Co(Y) ® CI™), (2.18)

for which the tachyon configuration reads

d+s

F=u Z T @I +u Y (—idg) @ T, (2.19)

a=q—s+1 B=q+1

where T and —il"? are in M, (R) ® CI% for some n (see apendix B.2), satisfying

ret = e, (—il?)T =4TP, (2.20)
(re o) = 9509’ (09,19 = 26%5 (r*, 1% = 0.

One can note that many physical properties of D-branes are obtained through the
analysis of Clifford algebras. Indeed, as it has been carefully studied in [6] for ¢ = 9
and s = 9 —d and for ¢ = —1, it is possible to extract some information as the tension
of the Type I D-branes from the Type IIB ones and the gauge field representations
of the tachyon associated to the worldvolume field theory of the Type I Dd-branes
constructed from instantons. This is achieved by looking at the representation theory
of the real Clifford algebras involved in the definition of the K K O-groups.

3 Dd-branes in orientifold backgrounds and Real
KKR-theory

Up to now, we have reviewed the classification of D-branes in terms of K-theory, K-
homology and KK-theory. For instance, we have seen that the Real K-theory group
KR is the correct one to classify D-branes constructed from non-BPS D9-branes in
Type II orientifolds O1,05 and O9. On the other hand, we have a classification of
D-branes, constructed from non-BPS Dg-branes in Type I theory. The next thing to
do is to classify Dd-branes by KK-theory in a more general orientifold background.
By considering only Op~-planes with p = 1 mod 4, we shall propose in this section
that Real KK- theoryﬁ is the correct group to classify Dd-branes in such backgrounds.

5We adopt the convention in mathematical literature by refering to the orthogonal KK-theory as
“real”, and to the complex (with involution) one as “Real”.
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Dg-brane / Op-plane

|s Dd-brane s~ Dd-brane
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Op-plane Dg-brane
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Figure 1: A Dd-brane constructed from a Dg-brane where d < q and (a) Dq is dimensionally
higher than the orientifold plane Op, (b) q < p.

Following closely [6], we shall show that our proposal can also reproduce some of the ex-
pected properties of non-BPS and BPS branes by studying the related Clifford Algebra.

3.1 Dd-branes from unstable Dg¢-branes in orientifold back-
grounds and K-theory

In order to know how to construct KKR-theory groups, let us first construct a K-
theory group which classifies Dd-branes on top of an orientifold plane. Here we do not
consider the case in which (part of ) the Dd-brane is constructed from lower dimensional
D-branes. As far as we know, this group has not been reported in the literature.
However, its construction is straightforward as we shall see.

The general situation can be divided in two diferent configurations: 1) The Op-
plane is immersed in the unstable Dg-brane, i.e., ¢ = p and 2) the opposite situation in
which p > ¢q. We concentrate on those cases in which the Dd-brane is totally immersed
in the orientifold plane. More general cases are taken into account in the KK-theory
formalism.

Case 1: ¢ > p. The important issue is to construct the transversal space to
the Dd-brane as depicted in Fig [[a). It is easy to see that such space is given
by RO-9+@=r)r=d from which we can construct the associated K-theory group as

10



K R(RO-9+(a-r)r=d) By using the following relations for KR

KR(R™) = KO(S™),

KR(Rn,m) — KR”’O (RO,m) KRO m(Rn 0)7
KR (X) = KR(X x R™™)

)-

Y

KR"™(X)=KR"™(X)=KR""™3(X (3.1)
we can rewrite the K-theory group as
KR'"™Y(RIPP~d) (3.2)

where R?7PP~% is the transverse space of the Dd-brane respect the unstable Dg-brane
system.

Case 2: p > ¢q. Let us now consider the depicted in Fig. [i(b). For the orientifold
plane containing the unstable Dg-brane, the transversal space for the Dd-brane is
R9-P.(p=a)+(a=d) for which the corresponding K-theory group is

KR(RYPP~d) = K RO~ (RO4~4), (3.3)

where we have again used the isomorphisms for K R in the left hand side. Notice that
the K-theory group written in such a way, allows us to identify the space R%9~¢ as the
transversal one to the Dd-brane with respect to the Dg-brane, as in case 1.

Now, let us check if the above two formulae are consistent with what we already
know. Essentially we have two limits to check. First of all, if ¢ = p = 9 we repro-
duce immediately the known formula which classifies Dd-branes in Type I theory, i.e.,
KO(R%"%). The second limit to recover is Bergman’s formula for Dd-branes in Type
I theory, from unstable Dg-branes. Hence in this case, p = 9 but different from ¢. In
such a case, the related K-theory group reads

KR7Y R = KO (RI™Y), (3.4)

which indeed validates our proposal.

3.2 The Real KK-theory group

We now proceed to define the KKR-theory groups relatad to the configurations so far
discused.

We start by introducing the formal definition for the Real KK-theory group which
we shall apply in order to classify Dd-branes in orientifold backgrounds.

Real KK-theory groups are defined in terms of a Real C*-algebra which is just
a complex C*-algebra with an additional antilinear involution Z such that Z(byby) =
Z(b1)Z(be) and Z(b*) = (Z(b))*, for every b, by, by in the complex C*-algebra. Notice as
well that (by definition) Z(i) = —i.

Now, let A and B be trivially graded, separable and unital Real C*-algebras. An
even Kasparov Real A-B-module is defined as for the complex and orthogonal cases
(see Appendices A and B for details and notation), with the following additional data:

11



e An antilinear Real involution Z on Hp with the following property: Z(xb) =
Z(z)Z(b) and (Z(x),Z(y)) = Z((z,y)) for z,y € Hp and b € B.

e An antilinear Real involution Z on B(Hp) = My(M (B®K)) defined by Z(T')(x) =
Z(T(Z(z))) for z € Hp.

e o : A — B(Hp) is a *-homomorphism of Real C*-algebras, i.e. ¢(Z(a)) =
Z(¢(a)) foralla € A.

The basic K K-group for Real C*-algebras A, B will be denoted K K R(A, B) and
it is defined as the equivalence classes of even Kasparov Real A — B-modules with
the equivalence relations defined as in the complex and real cases; with the additional
requirement that both, the homomorphisms ¢ and the operators T appearing in the
Kasparov modules; as well as the unitary operator generating the relation of unitary
equivalence be invariant under the Real involution (Z(a) = a), i.e they belong to the
fized point algebra of the Real algebra to which they belong.

The corresponding higher K K R-groups are denoted as KKR™ = KKR,(A, B)
and defined as in the real case, but using the Real Clifford algebras PC™™, with some
Real involution Z, which is determined in our case by the orientifold Op~ action on
the Clifford generators . Hence, we denote the involution action on an element a of
the Real Clifford algebra as Zg_,(a).

In this way, we have [17) 20]

KK Rpir_s(A, B) = KKR(A® PCI™™ B® PCI™) (3.5)

The K K R"-groups are periodic mod 8 and K KR(A, B) = KKO(A, B) if both A
and B have trivial Real involution [20]. A Bott periodicity result also holds for Real
K K-theory:

KKRF(X,Y) = KKR™ (X x R™" Y) = KKR"™"(X,Y x R™"),

KKR™(pt,Y) = KR™™(Y). (3.6)

One important example that will be useful in Sec. 4 is Y = pt. In terms of the Kas-
parov modules, the Real KK-theory group K K R™"(Cy(X), pt) = KK R(Cy(X), PCI™™)
consist of equivalence classes of triples ( PH, P¢, PF') where PH = PC*® @ PCI™™ is
the Hilbert space over Cy(pt) @ PCI™™ ~ C & PCI™™, P¢: PCo(X) — PB(PH) is a
«-homomorphism and PF is a self-adjoint operator in PB( PH) = PB(PC>®)® PCI™™.
On all of them, the index p means that there is an induced involution Zy_, (in our case
from the orientifold action on the spacetime) with the properties mentioned above.
Also we require for the tachyon and the scalar fields to be odd and even respectively
under the Zs-grading.

6We denote the Real Clifford algebras as PCP-? in order to distinguish them from the complex
Clifford algebras used in complex K K-theory. Also, we denote a generic field ¢ under the action of
the involution Z determined by the orientifold p-plane as Pi).
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In this context, the tachyon is written as

F= > TA, (3.7)

A€ p(Cl;L(’lZL

where T; € PB( PC*) which transforms on a representation determined by the self-
duality condition F' = F' and the A; form a basis for PCIyy, which denotes the
odd part of the Real Clifford algebra PCI™™ (see Appendix C). Similarly, the unitary
transformation U € PB(PH) on PH, which is a gauge transformation, is even with
respect to the Zy-grading determined by (—1)f*. Hence, such transformation, together
with the scalar fields, are written as

Yo=Y @B, (3.8)

Bj€ PClgien

where ¢; € PB( PC*) and the corresponding representation is obtained from the
condition P¢p = P¢l. B; form a basis for PCI%™, which denotes the even part of the
Real Clifford algebra PCI™™.

Notice as well that the tachyon, scalar fields and the unitary transformation must
be invariant under the orientifold action, i.e., written in terms of the Clifford algebra
elements, they belong to the so-called fixed point algebra of the corresponding Clifford
Algebra El (See Appendix C for details.)

3.3 D-branes in orientifolds and Real KK-theory

With all the necessary ingredients we are in position to construct the relevant KKR-
group which classifies Dd-brane in the presence of orientifold planes. As we have seen,
one can construct it by analyzing the Dd-brane transversal space.

Let us start by identifying the spaces X and Y’. There are two different configura-
tions according to the relative values between ¢ and p, i.e., whether the plane Op~ is
immersed in the unstable Dg-brane (¢ > p) or viceversa (p > ¢). Let us start with the
first case as depicted in Fig[2

We fix our notation by claiming that the final Dd-brane is located in coordinates
20, oo s Pt Pt gt L. p0td=s=T Notice also that our assumption is that
the subspace of the Dd-worldvolume of dimension (s+r) is created by the usual tachyon
condensation from the Dg-brane, while the subspace of dimension (d—s—r) is gathered
from tachyon condensation as in the K-matrix theory. Therefore, the transversal space
Y’ to the subspace of dimension (r + s) is given by RO-@+@=p=7)r=s while the sub-
space X with dimension (d — s — r) is R9=*~"%, Hence it follows that the KKR-group
classifying Dd-branes in this configuration is given by

KKR(RCI—S—T’,O’ R(Q—q)—i—(q—p—r),p—s) _ KKRl_q(Rd_S_T’O, Rq—p—r,p—s)’ (39)

where we have used the relations (3.6]) for the last two terms. We can see that Y =
R4—P—T.p—s

It can be shown that an element of the fixed point algebra of PB( PC) is, roughly speaking an
infinity real matrix with no involution; then the condition of belonging to the fixed point algebra of
PB(PH) = PB(PC*®)® PCI™™ is equivalent to belong to the fixed point algebra of PCI™™ times
an infinity real matrix i.e we only need to know the fixed point algebra of PCI™™.
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Figure 2: A Dd-brane constructed from tachyon condensation from unstable Dq-brane and
unstable D-instantons. The orientifold Op lies inside the Dg-brane worldvolume.

Let us now focus in our second configuration, i.e., the case in which the Dg-brane
is immersed in the orientifold plane Op~ as depicted in Fig. Bl (p > ¢). Notice that in
this case, there are some transversal coordinates of the Dd-brane with respect to the
Dg-brane which are extended also inside the orientifold plane. We consider the Dd-
brane to be extended in coordinates 2%, 2t .-, x5, 29t ... g0t gt L gptdes
while the unstable Dg and the orientifold are extended in coordinates labeled by their
dimensions.

Hence the transversal space Y’ is R97PP~a+a+7=5) while the space X is given by

R=%" such that the relevant K K R-group is
KKR(Rd_S’T, RQ—p,p—q+(q+r—s)> _ KKR9—2p+q (Rd—s,r7 Ro,q—l—r—s)’ (3_10>

where in the last equality we have used the isomorphisms for K K R. Since we are
working with p = 1,5,9, this last group reduces to K K RI~!(R%=*" R%4*"=%)  Notice
that in this way, we can identify the second entrance in the bifunctor R*4*7=* as the
Dd-brane’s transversal space within the Dg-brane.

There are actually two special limits we want to consider. In type I theory one has
p = 9 and we should recover the results given in [6]. Indeed, in this case (p > ¢q) we
get that s = d and from (3.10)

KKRq—l (Rd—s,r’ Ro,q-‘rr—s) — KKRq—l (pt, ]RO,q—d)

KRR

KO (R~

= KKOT'R*m=2 R™), (3.11)
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Figure 3: Dg-brane dimensionally lower than the orientifold plane Op.

where m = ¢ — d 4+ r is the codimension between the part of the Dd-brane inside of the
unstable Dg-brane system.

The second limit we want to check is that of a Dd-brane located on top of an
orientifold with p # 9 and for this we can take the case ¢ > p. From Fig. 2 this
configuration is equivalent to set d = s and r = 0 in (3.9). Hence we have that X = pt
and

KKR'"IRIS 0 RITPmP78) = KK R'"™(pt, RT PP~
= KR'7I(RIPP), (3.12)
which is in agreement with previous results from section 3.1.
One can ask what kind of extra information (with respect to K-theory) does we
get from these groups. The main point (besides some more formal statements) is
that we can have now a group which classifies D-branes intersecting orientifold planes.

This can be achieved easily by noticing that Eqs.(3.9) and (BI0) can be written as
KK R(R4=%9 R9=PP=5) which satisfies

KKR(RI™0 RI™PP=5) = KO(R#P~25Td71), (3.13)

from which we can see that specific values of ¢ and r are not important. This means
that it does not matter which unstable brane we select to construct a Dd-brane, but
how many coordinates s of the Dd-brane are inside the orientifold plane.

3.3.1 Example 1

It is easy to check that the orthogonal KO-group in (B.13) classifies D-branes in a
Type I T-dual version. To see this, consider for instance a D3-brane in coordinates
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(2%, 21, 2%, 23), and an orientifold O1~ located in coordinates z°, z'. By applying T-

duality on coordinates x2-2%, one gets a D7-brane in Type I theory. Such a brane is

classified by KO(R?) = Z,. Now let us check if Eq. (3I3) leads us to the same group.
In this case, ¢ > p and the configuration is similar to that depicted in Figl2l It turns
out that s =p =1 and

l.r=2andd—s—r=0, or
2.r=1landd—s—r=1,or
3.r=0andd—s—r=2.

For all cases, Eq. (B13) gives the group KO(R?) in agreement with T-duality. The
same applies for all different configuration of D-branes and orientifold planes. The
KO-theory groups from Eq. (B13) classifies the T-dual version in Type I theory.

One can try to do the same for other type of orientifolds, like the ones with a nega-
tive square involution (positive RR charge) and for orientifolds in Type ITA. However,
for such cases the related KK groups are not well known from the mathematical point
of view. Hence, we can only establish some expected properties for such groups based
on physical arguments. We shall comment on these issues in the section

4 Unstable non-BPS D-branes in orientifolds and
KKR-theory

We shall follow the criteria in [6] to show that Eqs. (8.9) and (B3.I0) correctly classify
Dd-branes in orientifold backgrounds. Hence, we shall extract the field content of
unstable non-BPS Dg-branes from the Clifford algebra related to the KKR-group. As
we have seen, the related Clifford algebra is a complex algebra with an antilinear
involution induced by the orientifold action. In this section we shall obtain the Clifford
algebra for each configuration of non-BPS Dg-branes and Op-planes, and we shall see
that the field content perfectly agrees with that of an unstable non-BPS brane. Finally
we use T-duality to show that the properties of the non-BPS branes are those expected
from non-BPS branes in Type I theory.

Our proposal for the classification of Dd-branes in Op~-plane background is given
by Eq. (39) and Eq. (3I0) according whether ¢ > p orp > q.

By using Eq.(3.3]) we have that

KKR™(X,Y)=KKR, (X,Y)

B { KKR(Cy(X;C)® PCI%', Co(Y;C)) g—1>0 1)
_ pe .

KKR(Cy(X;C)® PCI*=29 Cy(Y;C)) 1—¢q>0,
for p < ¢ while for p > ¢, we have

KKR"™(X,Y)=KKR, ,(X,Y)
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_ { KKR(Cy(X;C),Co(Y;C)® PCI*2%) 1—¢>0 (4.2)

KKR(Cy(X;C),Co(Y;C)® PCI4Y) g—1> 0,

We shall use the above formulae as definition of the KKR-theory groups for D-brane
classification. This choice is taken in order to recover the convention in [6] where p =9
and consequently ¢ < p. Since in this case the involution is trivial, (£2) reduces to the
definition for KKO™"(X,Y’) used in [6]. In that sense, we classify non-BPS Dd-branes
by making them to coincide with the unstable Dg-system, implying that X = pt and
that Y = pt. By this assumption we can safely conclude that all information about
these non-BPS D-branes relies on the corresponding Clifford algebras. All what we
need to specify is the involution action on the Clifford algebra generators.

4.1 The Real involution and orientifolds

Let us describe explicity how the real involution acts on the Clifford generators induced
by the orientifold Op~-plane.
The complexified Real Clifford algebra is defined as

PCIvm = P (1" @ C). (4.3)

Since the involution acts as conjugation on the complex part we can write (see Appendix
C for details)

P(CI"™®C) = PCI"™ @ C, (4.4)

where C denotes the field of complex numbers with Real involution defined by usual
complex conjugation and PCI™™ denotes the Clifford algebra C'1™™ with some Real in-
volution (again, this involution is determined by the orientifold plane on the generators
of the algebra and extended by linearity).Thus, it suffices to study the involution in the
real part PCI™™. Hence, we shall concentrate on how to fix the involution inhereted
from the orientifold Op~-plane on the generators of the real Clifford algebra.

According to Egs. (A1) and (4.2) the complex Clifford algebras with involution we
use, are of the form PCI™° or PCI%". Hence we shall concentrate on the involution on
their associated orthogonal (real) Clifford algebras, whose generators can be identified
with spatial coordinates via the vector space isomorphism

CI™? = N R™ = O™, (4.5)

Let us consider the case in which 1 — ¢ < 0 such that the related Clifford algebra is
PCI%9~1, By the above isomorphism we identify the generators e;, (i =1,---,q— 1) of
the Clifford algebra C1%97! with vectors of the little group SO(q — 1) of a Dg-brane.

Hence, the involution inhereted form the orientifold p-plane, denoted as Zg_, acts
on the generators of the complex Clifford algebra as in the longitudinal coordinates z*
to the Dg-brane. Because of this, the involution depends on the relative value between
p and q. Then, if ¢ < p we consider a Dg-brane inside the orientifold plane, as in the
following configuration
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Oop- |- - - —-— - - - - - —- X X x X

inducing a trivial involution on all the Clifford algebra generators
Ty_p(e;) =e; for all . (4.6)

On the other hand, if ¢ > p, the unstable Dg-brane is located as

|0 1 2 -« pl p p+¥l -+ ¢l q q¢+1 -+ 8 9
Op|— - — — — — X X X X X X X X
Dg |— — — — — - - - - - X X X X

and the involution is given by

B e, for i=1,....,p—1,
Zy-p(e;) = { —e; for i=p,...,q+ 1. (4.7)

By Bott periodicity and Egs.(4.1]) and ([4.2) we have
KKR(X, PCI™™ ") = KKR(X, PCI?~?9). (4.8)

In this way, we can use instead the (9—¢q) generators e; of PCI%~%°, with i = ¢+1,---,9
which are identified with the transversal coordinates to the Dg-brane. The involution
is again dependent on the relative values between ¢ and p. For g < p (see Fig. B]) we
have

_ €; for izly"'vp_q7
To-plei) = { —e; for i=p—q+1,..,9—q, 4

while for ¢ > p we have
To_p(ei) = —e; for all 4. (4.10)

Therefore, one sees that for ¢ > 2, we have at least two different ways to identity
the Clifford algebra generators with spatial coordinates i.e. internal or transversal
coordinates to the Dg-brane system. For each identification there are two choices for
the involution on the Clifford generators, depending on the relative value of ¢ and
p. However we also see that for ¢ < p is simpler to establish the identification with
internal coordinates to the Dg-brane, while for the case p < ¢ is the opposite. We shall
adopt this identification henceforth.

Although the identifications are not so geometric for ¢ < 2, we have similar involu-
tions. For ¢ = —1 the relevant Clifford algebra is PC1*" and the involution acts on the
generators as Zg_,(e;) = ¢; (i = 1,2). Similarly for ¢ = 0, the Clifford algebra is PC°
and the involution acts also trivially on the generator.
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4.2 Non-BPS D-branes in orientifold backgrounds

Now, we are going to get the representations of the tachyon, gauge and scalar fields from
the corresponding Clifford algebras, following the procedure used in [6], and we will
show that they correspond to the properties of unstable non-BPS Dd-branes classified
by the groups in Eqs. ([B.9) and (B.I0). Due to Bott periodicity in KKR"(X,Y) ~
KKR™8(X,Y), all cases are considered within the range —4 < n < 4. However, in
contrast with D-branes in Type I theory, the involution acts different for a Dg-brane
than for a D(q + 8)-brane. Notice as well that, although Egs. (3.9) and (8.10) do not
depend on p (in these kinds of non-BPS branes), the involution does.

4.2.1 Example 1

Consider for instance the case of a non-BPS D8-brane and an O1~-plane in a configu-
ration as follows

Ol | — — X X X X X X X X
D8 |- — — — — - - — — x.

The corresponding group is K KR~ (pt,pt) ~ KK R'(pt,pt) with an associated Real
Clifford algebra 'CI*°. The action of the involution on the generator of *CI*? is given
by

18(61) = —€1. (411)

This determines the fixed point algebra for !CI'° and hence, the corresponding repre-
sentation for the tachyon, gauge and scalar fields. By imposing the condition Zg(a) = a
for a € CI', one gets that

(fCit?),, = Ci, (4.12)

which fixes the tachyon 7" and the scalar field ¢ to be symmetric tensor representations
11 of the gauge group O(o0). As it was shown in [0], these results correspond to the
field content of an unstable non-BPS D2-brane in Type I theory. This is in agreement
with formula (3.9) since for this casdip=s=1,d=¢=8andr =7, and the relevant
KKR group is given by

KKR "(pt,pt) = KOR") =0, (4.13)

which indeed is the K-theory group which classifies D2-branes in Type I theory. One
can as well check that under T-duality on transversal coordinates to the O17-plane,
the unstable D8-brane transforms into a D2-brane in Type I theory. Notice that the
involution does not change for p = 5, for which we get the same field content for a D8
in an O5~-plane.

8 Actually, as we shall see, similar conditions hold for all unstable non-BPS D-branes.
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4.2.2 Example 2

Contrary to the case in Type I theory, the field content for a non-BPS DO-brane in an
O1~-plane

Ol | — — X X X X X X X X
DO | — X X X X X X X X X

should not be the same than for a D8. This is obtained by realizing that for a DO-
brane, although the Real Clifford algebra also is 'Ci', the involution on the single one
generator e is trivial, Zg(e;) = e;. This implies that

(tcit?), = cit. (4.14)

Therefore, the tachyon field 7" and the scalar field ¢ are antisymmetric H and symmetric
[T tensor representations, respectively, of the gauge group O(oo) [6]. This field content
is precisely that of an unstable non-BPS DO0-brane in Type I theory. This also is in
agreement with formula (3I0) in which r = s =¢=d = 0 and p = 1, implying

KKR ' (pt,pt) = KO(R") = Z,, (4.15)

which classifies D8-branes in Type I theory. Indeed, the configuration of a D0O-brane
in an O17-plane is T-dual to a D8 in an O9 -plane. For p = 5, the involution is the
same and we get the same group.

4.2.3 Example 3

Another interesting situation presents for ¢ = 5, i.e., D5-branes in O1~ and O5~ -planes.
The Real Clifford algebra is given by PCI*° for p = 1,5. In this case, the involution
acts as Zy(e;) = —e; for i = 2,3,4,5. As a consequence, the fixed point algebra is C1%4.
For this case, we can also take the Real Clifford algebra as PCI*° = PCI%*. However
the involution acts trivially on the corresponding generators. The fixed point algebra
is then C1*0. Tt is easy to check that Ci*? = C1°*. Hence, as it was shown in [6], the
tachyon and scalars fields transforms in the bifundamental and antisymmetric tensor
representations of the gauge group Sp(co) x Sp(oc). This is the field content of a pair
D5-D5 branes in Type I theory, which agrees with the result given by

KKR(pt,pt) = KO(R") = KSp(pt) = Z. (4.16)

The complete set of Real Clifford algebras for all unstable non-BPS branes is summa-
rized in Table[Il The representations and gauge groups for each case are recovered from
the results shown in [6] just by computing the fixed point algebras, as in the previous
examples. For completness we summarize such results in Appendix C(see Table [3]).
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Dd | PCI™™ | (PCl")ax | KKR" KO™(pt) | T-dual in Type I
p=1| D(-1) || 'C?° | C?»* | KKR? | KO?%=17, D7
p=5 5C[*0 KKR | KO =17, D(-1)

DO lcpto O KKR™' | KO '=17, D8

SCIM0 KKR™® | KO =17, DO
D1-D1 || 'Citt ClHt KKR® KO°=17Z D9-D9
SCIbt KKR?® | KO8%=1Z D1-D1
D2 1ot O KKR™' | KO ' =17, D8
SCIt C1o1 KKR™ | KO7"=0 D2

D3 1Cio2 C1?° KKR™2 | KO %2=17, D7

°Cl%2 102 KKR™5 | KO %=0 D3

D4 o3 CP3O° KKR™3 | KO3=0 D6

°Clo3 C1o3 KKR™S | KO5=0 D4
D5-D5 || 'Ci%* C140 KKR™ | KO™*=1Z D5+D5
5Cl0’4

D6 e C1%3 KKR™® | KO5=0 D4

5Cl370

D7 1cr0 102 KKRS | KO %=0 D3

5Cl270

D8 lcpto C1o1 KKR™ | KO7"=0 D2

5Cl1’0

Table 1: KK R-groups and their related Clifford algebras, fixed point algebras and
K O-theory groups for unstable Dg-branes in O1~ and O5 -planes. The empty entries
stand for the same expressions as the preceding row.
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4.3 Dg-branes from D-instantons in orientifold backgrounds

As we have said, we shall follow the criteria in [6] to test the validity of formulae (3.9)),
(BI0). For that we are going to show explicitly the construction of a Dd-brane from
an infinitely many number of instantons in the presence of an orientifold plane O1~
or O57. In [6] the authors found that the tension of Dd-branes in Type I theory are
related to the size(dimension of the representation) of SO(d) gamma matrices. In the
case of lower dimensional orientifold planes, we shall get a similar relation.

The strategy in [6] adapted to our case is as follows. An explicit configuration
representing a Dd-brane is gathered by constructing the corresponding configuration
in Type I1B, based on D-instanton-anti-D-instanton, which survives after the orientifold
projection.

Hence, since the relevant Real Clifford algebra related to a system of D(—1)-D(—1)
is CI*>Y, and being the tachyon field odd with respect to the Zs,-grading, it can be
written as

F =Ti& + Tves, (4.17)

where e;,¢, € (Clgaod = (Clgaod ® C), and T} and Ty are real fields. Besides this, the
tachyon field is self-dual (F = F) and is invariant under the involution Zy_,, i.e.

To_,(F) = F, (4.18)

which makes it belongs to the fixed point algebra of the corresponding Real Clifford
algebra. Then, the tachyon field can also be written as

F = Toer + Tyes, (4.19)

where T, and T}, are complex fields and e, ey € C’lzfd. Defining the field T' = T, +
Tye1 A es one gets that T = —T' due to the self-duality condition on F. In particular,
we observe that for an O9 -plane, the involution acts trivially on all Clifford algebra
generators. This implies that Im 7, = Im 7}, = 0 and that 7= —T'*.

Now, since for a Dd-brane constructed from instantons, the tachyon field also reads

d
F=pYy pol (4.20)

i=0
comparing with Eq. (£I9) we conclude that

T, = a0 ® 707
T, = 0; @), (4.21)

with (74, ;)" = 7/,, being hermitian y-matrices, which in the abscence of an orientifold
plane, are irreducible hermitian SO(d + 1) gamma matrices. In the presence of orien-
tifold planes O5~ and O17, it turns out that the involutions Z, and Zg act trivially on
the generators e; and es (as in the Type I case). This renders the gamma-matrices to
split into 7° = I and SO(d) gamma matrices 7* (i = 1,...,d) with the latter forming
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Dd DO | D1 |D2|D3|D4|D5|D6|D7|D8| D9

Size in 1IB 1 112124488 ]16]|16

Size in IIB + Op-plane, p=1,5 || 1 1 2 4 | 8 8 | 16 | 16 | 16 | 16
T-dual into Type I (p =1) DS | D7 | D8 | D7 |D6|D5|D4|D3|D2| D1
T-dual into Type I (p = 5) DO | D1 |D2|D3|D4|D5|D4|D3|D2| D1

Table 2: Relative dimension of the representation between gamma matrices related to
Dd-branes in Type IIB and in Op~-backgrounds with p = 1, 5.

a real representation of C1%¢. Using this information we can compare the size of the
tachyon in Type IIB and in the presence of orientifold planes. The ratio does not
depend on p, implying that the tension (and size) of a Dd-brane in an O5~, O1~ and
09~ (as in the configurations considered in the previous section) is twice than that in
Type IIB for d = 3,4,5,6,7. Notice that for p = 1,5 the Dd-branes with twice the
tension than in Type IIB are T-duals to those in Type I theory which also have twice
the tension as their counterparts in Type IIB. This is shown in Table 2. Notice as well,
as it was pointed out in [6], that this is consistent with the construction of D-branes
in Type I theory, since those branes in an Op~-plane with twice the tension than in
Type IIB, are T-duals to Type I D-branes constructed from two Type IIB branes or a
pair of brane-antibrane.

This is our last test to show that indeed, KKR-theory truly classifies D-branes
charges in (the provided) orientifold backgrounds.

5 A proposal for clasification of D-branes in Op*-
planes

In [1] and [6] KK-theory and KKO-theory are used to classify D-branes in Type II
and Type I superstring theories respectively. Also in this paper we have extended
this classification to orientifold backgrounds in Type IIB string theory by using KKR-
theory.

Then, it is natural to think about the possibility of other KK-theories H, extending
the K-theory classification of superstring theories in different backgrounds than those
appearing in this paper. In particular, we focus on Type IIB Op™ orientifolds (the
involution induced on the Chan-Paton bundles is 72 = —1) which are classified by
quaternionic K-theory, denoted KH [I3] and symplectic USp(32) (IIB + O9%) string
theory proposed in [2I] which is classified by symplectic K-theory, denoted KSp.

We focus on these particular backgrounds because their associated K-theories have
close relation with KO and KR theoried'd and consequently, we can conjecture some

9At least those KK-theories related with K-theories classifying consistent stringy backgrounds.

10Tn [6], though they do not make explicit mention of KKSp theory, they use the relation between KO
and KSp theories to conclude that USp(32) theory is classified by K K093, where ¢ is de dimension
of the unstable D-brane in the USp(32) theory. But USp(32) string theory is a consistent theory,
then there should exist KKSp theory, which should be related to KKO-theory in a suitable way to
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relations that their corresponding KKH and KKSp theories must satisfy.
For this purpose, we first write some properties and relations between KH, KSp
and KO theories:

KH(X)~ KH®(X), (5.1)
KHP(X) ~ KHPTH Y (X)) ~ KHPI(X), (5.2)
KH(Xg) ~ KSp(Xg), (5.3)
KSp(S™) ~ KO(S™%). (5.4)

In (53), X is the fixed point set of the involution of the spacetime and this property
reflects the fact that KH-theories are T-duals of USp(32) theory, with the involution
acting on the dualized coordinates. For example if we start with USp(32) theory and
we do not make any T-duality, then the involution does not act at all in the spacetime;
so in this case the fixed spacetime is the fixed point set of the involution; in this way
KSp(X) = KH(X) and USp(32) theory can be regarded as (IIB + O9%)-string theory,
in the same way Type I string theory can be seen as (IIB + O97)-string theory.

The most important property we shall assume in all KK-theory groups KK "(X,Y)
proposed here is that when either X or Y is the one point space, they reduce to the
respective K-theory and K-(analytic) homology functord. One consequence of this
property is that our KK-functors must preserve the original periodicity of their K-
functors, i.e n mod 8 periodicity.

Let us start with (IIB + O97) backgrounds, i.e. KKH-theory. Both the crucial
formula ([B.6]) of KKR-theory and the similar property (5.2) of KH-theory shared by
KR-theory allowed us to compute the KKR-groups and to confirm our proposal; then
we also assume that KKH-theory should obey a similar property:

KKHN(X,Y)=KKH*"=4(X x RP4,Y)=K K H*7*(X|Y x RP9).  (5.5)

Suppose we have a configuration similar to that of Fig. 2 (for our present purposes
it is enough to restrict our attention to this system; but it is straightforward to adapt
the following arguments for the configuration of Fig. 3. In analogy with the Op~
orientifolds, we propose that the KKH-group classifying stable D-brane configurations
is given by

KK H (R0 ROOHa=p=r)p=s) (5.6)
In this way the calculations are identical to the ones that lead to (3.9); so we have

KKH(Rd_S_T’O, R(Q—q)—l—(q—p—r),p—s) — KKHl_q(Rd_S_T’O, Rq—p—r,p—s)’ (57)

achieve the KKO-groups proposed in [6].
1 As in the case of KR-homology, there should be a suitable definition of topological K-homology
and it must be possible to prove the equivalence with the analytical K-homology defined above.
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which can be written, by using (5.1])-(5.4]), in the following way:
KKHl_q(Rd_S_T’O, Rq—p—r,p—s) — KSp(R2p_2s+d_1) — KO(R2P_28+d+3). (58)

If we take r = 0 and d = s, then the stable Dd-brane is located on top of the
orientifold plane and (5.8]) reduces to:

KKHl—q(RO,O’]Rq—PyP—d) — KSp(S2p_d_1) = KO(S2p_d+3), (59)

which is precisely Gukov’s prescription for D-branes located on top of Op™ orientifolds.
Then the basic properties of KKH-groups mentioned above are enough to carry on the
classification of stable D-branes in Op™ orientifolds.

To construct the corresponding “quaternionic Kasparov module” the first step is
to define a “quaternionic C*-algebra”; which means a Banach x-algebra A over the
quaternionic field such that, the C*-equation ||z*z|| = ||z||* holds for any x € A.

Then, one can follows the path traced in [17] by substituting the fields R or C
by H; and the complex, real and Real Clifford algebras by the quaternionic Clifford
algebras Cl;"™ 4 endowed with some C*-algebra structure. Of course, along the way
there may be some subtleties associated with the specific properties of H, such as
noncommutativity.

Now, we turn to USp(32) string theory. Suppose that in this theory we have a
configuration similar to the one described in the paragraph above equation (Z.I5).
Then we postulate (in accordance with (2I7)))that stable D-branes are classified by

KKSpT (R4 R?). (5.10)

In order for (5.I0) to reproduce the K-theory group of the transverse space of the
Dd-brane, we postulate the following property analogous to (B.H):

KKSpF(X,Y)=KKSpF"(X x R", Y)=KKSp*™(X,Y x R™). (5.11)
In this way we get
KKSpi (R~ R*) = KSp(R7P)
= KO™(R%?) = KKOI3 (R~ R¥). (5.12)

From the above equation we reproduce the claim in [6] that D-branes in USp(32)
string theory are classified by K KO%3(X,Y). So, we claim that

KKSp'(X,Y) = KKO™(X,Y) = KKO™(X,Y). (5.13)

12CIy™ is defined as the tensor product of the real Clifford Algebra C1™" with the quaternionic
field, i.e Clyy"™ = CI"™" ® H.
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D(p+2)

Op

Figure 4: Brane realization of @-planes.

5.1 An application: exotic orientifolds

We know that for p < 6 there are a variatey of orientifold planes, characterized by their
RR and NS-NS charge [22] 23, 24]. It is interesting to realize that a cohomological
classification of the RR and NS fluxes, tells us that there are at least 4 different types
of orientifold planes for p < 6 but only 3 in a K-theoretical classification [25, 24].

At the level of cohomology, there are two different types of orientifold related to RR
fluxes. They are classified by the torsion part of the group H"P(RP®~?, Z) = Z, which
is interpreted as a half-shift in RR charge,defining the exotic orientifold planes 5}9
The brane realization of this type of orientifold plane Op is depicted in figure @ where
roughly speaking, an exotic Op-plane is constructed by wrapping a D(p + 2)-brane in
a two-cycle of the transverse space of RP®*~? an Op-plane .

However, it can be shown [24] that a K-theoretical classification of RR fields gives
more information such as an explanation for the relative charge between different types
of orientifold planes. In this context Op~ and Op™-planes are classified (through their
RR fields) by KRP719(S%P0) and KRP~6(S*7PY) = KHP~10(S?7P) respectively. For
p = 1,5 we have the values

o1 : KRR = ZaZ,

o1t : KRR = 7,

05 : KRPRY) = 7,

O5% . KR'RY) = Z@Z,. (5.14)

13 Actually, if one consider an S-dual version of the conecction between cohomology and K-theory
(called the Atiyah-Hirzebruch Spectral Sequence) there are just two different types of orientifolds
classified by K-theory [26], 27].
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The abscence of a torsional part in the group for O5 -planes, is interpreted (via the
Atiyah Hirzebruch Spectral Sequence) as a shift in the RR charge by a half-unit, ex-
plaining the relative fractional charge between them and the exotic ones denoted O5-.
In this sense is easy to see that O5+ has the same RR charge than O5". For the case
of O1-planes, we have exactly the same situation, although there are extra Z, constri-
butions from cohomology. Once we compare this information with the corresponding
K-theory groups, we arrive to the same conclusions as for the O5-planes [24].

Hence, although the existence of these exotic orientifolds comes from cohomology
and a more accurate description about their RR charges is given by K-theory, this is
actually a classification of RR fields. The D-brane realization of exotic orientifolds
suggests on the other hand, a K-theory classification of D-brane (charges). Since an
@J—plane is constructed by a D(p + 2)-brane wrapping a two-cycle transversal to the
orientifold, it should be enough to classify such configuration of branes in an orientifold
background to elucidate their existence. This is precisely what KKR-theory does at
least for p=1,5,9.

Consider for instance the case of an O5 -plane and a D7-brane wrapping a two-
cycle transversal to the orientifold plane. Let us take the configuration given by g < p
(the same result can be obtained by taking p < ¢). Hence we have d —s = 2 and s = 5.
The related KKR-theory group is

KKR 5(pt,pt) = KO(R%) =0, (5.15)

which tells us that there is no extra contribution in K-theory to the O5 -planes. On
the other hand, for the Ol-planes, we have that d — s = 2 and s = 1. The related
KKR-theory group is then

KEKR™(pt, pt) = KO(R?) = Zs, (5.16)

which is also in agreement with (5.I4). Finally, we can check that for the cases of
O5*" and O17", the proposed KKH-theory groups gives the expected results. For the
O5"-plane we have that the relevant KK-theory group is

KEKHS(pt, pt) = KSp(R®) = KO(R?) = Zo, (5.17)
while for O17 we have that
KEKH2(pt, pt) = KSp(R?) = KO(R®) = 0. (5.18)

This confirms that an orientifold classification in terms of branes rather than fields is
easily gathered by KK-theory.

6 D-branes in Orbifold singularities and KK-theory

So far our main focus has been on the prescription of D-branes in orientifolds. In this
section we describe how to incorporate the equivariant version K K¢ (X,Y") of the Kas-
parov KK-theory bifunctor to the Dd-brane classification scheme. The expected group
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is KKq(X,Y) since the K-theory group classifying D-branes in orbifold singularities
is the equivariant group Kq(X) [10] 28].

For simplicity we will concentrate in the case where the dimension ¢ of the unstable
Dg-brane system is higher than the dimension p of the transverse space to the orbifold
singularity. The reader can extend the formulation for ¢ < p by following the arguments
in this section and section 3.3.

6.1 Type 1IB orbifolds and Equivariant K K;-theory

In order to describe orbifold singularities with equivariant K Kg-theory we assume a
group G acting on the (9 — p) coordinates (zP*!,...,2%) of spacetime in a Type IIB
string theory, i.e. the spacatime is

RPHE x (MP7P/@). (6.1)

Let us concentrate on the case of flat spacetime by taking: M®7? = R%7P. Then, the
general form of a subspace of spacetime is as follows:

R*% = (R*/G) x R”. (6.2)

In [29] it is shown that the K-theory group classifying D-branes in orbifold sin-
gularities in Type IIB string theory is the equivariant group Kqg(X), where X is the
transverse space to the Dd-brane with respect to the spacetime (or an unstable system
of D9-D9 spacetime filling D-branes). The arguments explained in Sec. 2.1 for the I1IB
string theory can be applied here. Indeed, the Kg-group classifying stable D-branes in
the Type IIB orbifold singularity with respect to an unstable Dg-brane system is given
by K‘(’;_I(X ), where X is now the transverse space of the stable Dd-brane relative to
the unstable Dg-brane system, with p < q.

Our goal is to classify all possible stable Dd-branes in the spacetime (G.I]) by using
equivariant KKg-groups and incorporating the unstable information of the Dg-brane
system mentioned above.

Using the above remarks and appendix B.1, we claim that the group classifying any
Dd-brane located in the orbifold singularity is K Kg;_l(X ,Y), where Y is the portion
of the spacetime supporting the unstable Dg-branes and X is the transverse space to
Y with coordinates (z9*!, ...  z°) in the whole spacetime. The present subsection will
be devoted to prove this claim.

It is worth to mention again the limiting cases. For Dd-branes extended totally
outside the worldvolume of the unstable system, we can take Y as a point. Then
K Kg;_l(X ,pt) is the group classifying D-branes extended along X. This is precisely
the Kg-homology of X which classifies D-branes by their worldvolume. Similarly, if the
D-brane is extended completely inside the unstable system, the group classifying stable
D-branes is the equivariant K-group KK& '(pt,Y) = K& '(Y) classifying in terms of
the transverse space of the D-brane relative to the unstable system.

Thus in the general case, given a Dd-brane whose position lies both inside and
outside of the unstable Dg-brane ambient, the two entries of the KKg-functor should
be filled firstly by the worldvolume X of the portion of the D-brane outside the unstable
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system. The second item Y of codimension m corresponds to the transverse space of
the Dd-brane in the unstable Dg-brane.

Then the spaces filling the KK-functor entries depend strongly in the directions
where the Dd-brane is extended, but not on its dimension d.

To be more specific, consider an unstable system of Dg-branes placed at the orb-
ifold singularity and extended along (z°,...,29) and place a Dd-brane extended along
(20, ..., 297™ 29+ x4™) where the spacetime is the orbifold defined above [ with
g—m < p < q. Then the KKg-theory group classifying this system is

KKé—l (Rd+m—q,07 Rq—pm—ﬁm)' (6.3)
Using (D.I) and assuming that G acts by a spinor representation we find that:
KKg_l (Rd+m_q’0, Rq_p,p—q—i—m) _ KG(R9—p—(d+m—II)7P—II+m>. (64)

At first sight the above equation depend on the dimension ¢ of the unstable brane
system, and this would rule out our proposal because the Dg-brane is an auxiliary
device for the KK-theory formalism, and the result should not depend on it. Then let
us argue that this result is indeed independent of ¢ and at the same time we will see
that our result is in full agreement with [29]. Remember that from this reference for
the Type IIB orbifold with the group Z, acting by reflection on n coordinates (n = 4
mod 4 in order to preserve some supersymmetry), we say that a Dd-brane is of type
(r,s), where d = r + s, if it has r + 1 Neumann directions with Z, acting trivially on
them and s Neumann directions inverted by Z,. Then for a given (r + s)-brane, the
transverse space has dimension 9 — (r + s); of which n — s directions are inverted under
the action of Zy. Then the Kg-theory group classifying Dd-branes in this orbifold is

Kz, (R, (6.5)

This result is tested by computing these Kz,-groups and comparing the result with the
boundary state formalism, finding full agreement [29)].

Though Eq. (6.3)) is just for Z,, we will prove that this result is valid for every group
acting on the spacetime by means of the spinor representation and then we will argue
that the action Z, for which (6.0) is valid acts precisely in this way. If we compare our
original system with the one described above, we find the following correspondences:

n=9-—p, d=r+s, s=d+m—q. (6.6)
With these relations one can easily express (6.4]) as
KKEH (RO, RITPPZ™) — Ko(RM597777), (6.7)

which is exactly (6.5) with a general group G acting by the spinor representation instead
of Zy. In (6.5 we only assume the existence of the D9-D9 unstable system and from
([67) we see that for each Dg-brane system our proposal is equivalent to (6.5). Then
we conclude that the KKg-formalism is independent of the Dg-system.

MIf d > g then m <9 —d.
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Now we argue why the Zs-action assumed above is spinor. In appendix D we
mention that G acts on R™ through the spinor representation if it acts by a group
homomorphism G — Spin,. By this we mean a homomorphism « : G — Spin,, such
that, when composed with the natural action of Spin, on R" (z — ~yzy™!, x €
R™, ~ € Spin,) we get a representation (which induces an action) of G on R".

Consider a D4-brane (d = 4) such that » = 1 and s = 3. Then we can think of
the orbifold Zs-action x ~ —z, with 2 € R3 as a w-rotation around some rotation
axis in R?; but we know that each rotation in R? can be generated by SU(2) ~ Spins
acting on R3 through Pauli matrices. In our particular situation, the homomorphism
assigning to —1 € Zsy the w-rotation U, such that

v UzU™' = —z, r € R3

does the job. Therefore we can see in this particular example how the Zy orbifold
action considered in [29] fits in our formalism.

Though it is not easy to find the homomorphism G +— Spin,, for higher values of
n, the arguments given above generalize to any n because Spin,, is the double covering
of SO(n), and consequently, to each SO(n) rotation always correspond at least one
element in Spin,,.

We have generalized [29] (at least for the case of flat noncompact orbifolds) because
our formalism applies to any group action on the spacetime which can be described
as a rotation around some axis. Our result also includes some of the examples stud-
ied recently in [30], where the orbifold actions are rotations around some axis of the
spacetime. In particular, we generalized the flat orbifolds in [30] of the form Zj for any
k € N and Z x ... X Zy, (without discrete torsion).

Now we consider an example discussed in [30]. This is the orbifold C3/Zs, with
spacetime of the form R* x C3/Zs, where (2°, 2!, 2%, 2%) are the coordinates in which
Zs acts trivially and z' = 272 (z2+! 4 222) § = 1,2, 3 are the coordinates where the
generator g of G acts in the form

g(2', 2%, 2%) — (exp(2mivy ) 2!, exp(2mivy) 22, exp(2mivs ) 2%), (6.8)

where (v, vs, v3) = (5,3, —2). The action (G.8) is clearly a rotation in C*. Therefore
the action of Zz on any D-brane with s Neumann coordinates in C/Z3 can be seen as
a rotation of the s-coordinates and hence as a spin representation of Zs in Spin, and
hence this example is also included in our formalism.

Now we describe the gauge theory living in the unstable Dg-brane system [31].
Following [6], we focus on the stable D-branes which are outside the worldvolume Y
of the unstable Dg-brane system and consequently Y can be set to be a point. In
our case we need to take into account the images of this point under the action of
the group; thus we set Y to be the space of t-points, where t is the cardinality of G.
The K Kg-theory group classifying the above D-branes with respect the Dg-unstable
system is given by

KXt points}) = KKa(Co(X), C({t  points}) @ CI°~*

= KKq(Co(X), (€i-,C) @ CI’77) = KKg(Co(X), @i, (C ® CI*77))
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- @ KKq(Cy(X),C o Cl>79). (6.9)

1=1

Thus we can associate a “gauge group” for each direct summand in ([6.9)). If we assemble
these gauge groups in a block diagonal matrix, we get a matrix M with ¢ blocks and such
a matrix belongs to the algebra B(Cy(t points)™) ® CI°7¢ of adjointable operators
on Cy(t points)>® ® CI°79, which is the appropriate Hilbert module for describing
K Kg_l(X ,{t points}). Moreover, M represents the gauge group of the low energy
effective field theory on the Dg-brane worldvolume, which is of the form (for a finite
number of branes) [[i_, U(N;) or [['_,(U(N;) x U(N;)), where R = @!_, Nir; is the
representation of G on the Chan-Paton factors and r; are the irreps of G. Of course,
each block in M is infinite because in order the KK-theory make sense we must assume
the presence of an infinite number of Dg-branes [1].

If we take for instance, ¢ = 7 then following Ref. [6] and the preceding section,
the gauge group associated to each of the factors in @,_, K Kq(Cy(X),C ® CI?~7 is
determined by [CI?,,,] = C & C which corresponds to U(co) ® U(oc). Thus the gauge

group of the unstable D7-brane system in the orbifold singularity is (as expected) given

by ITi—1(U(c0) ® U(c0)).

7 Final Remarks

In this paper, we have extended to Type IIB orbifold and Op~-orientifold backgrounds
the KK-theory formalism proposed in [I, [6] for Type IIB and Type I string theory
respectively.

In particular, for the orientifold case, we considered Op~-planes with p = 1,5,9,
for which the presented formalism naturally incorporates stable D-branes intersecting
the orientifold planes, generalizing in this sense the proposal in [13] for the mentioned
cases. This is achieved by constructing D-branes from unstable Dg-branes in which
the final D-brane has internal and external coordinates with respect to the Dg-brane.
In this sense, the internal coordinates are identified with the space Y and the external
ones with the space X, where X and Y are the entrances in the KKR-theory bifunctor
KKR(X,Y).

Specifically we propose that Dd-branes intersecting Op~-planes are given by the

groups in Egs.(3.9) and (3.10)

KKR(R*70 RO-OFTa—p=r)p=s) — KK RITYRIST0 RIPP75)  for p < g,
KKR(Rd_S’T, Rg—p,p—q-l-(q—l—r—s)) — KKR9—2p+q (]Rd—s,r7 RO,q—l—r—s) for p>q.

In order to show that these groups correctly classify the corresponding configurations of
D-branes and orientifolds, we also compute, by extensive use of the Clifford algebras and
the structures defined on them, the gauge group and transformation properties of the
effective fields living in the worldvolume of the unstable Dg-branes. The transformation
properties of the tachyon and scalar fields of this unstable systems are read from the
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fized point Clifford algebra. This algebra consists of Clifford generators invariant under
the involution, determined in turn by the action of the corresponding orientifold plane.
The set of algebras related to different configurations is listed in Table 1 in text. In all
cases we found perfect agreement with Type I T-dual versions, as reported in [6]. This
shows that Clifford algebras contain relevant information about stability, RR charge
and construction of D-branes in general backgrounds.

However, although this formalism seems powerful enough, the mathematical infor-
mation in literature concerning other physical relevant cases, as positive RR charged
orientifolds, is limited. Working out with expected physical properties instead, we
have proposed some KK-theory groups related to the mentioned cases. In particular
we have proposed some versions of KK-theory (KKH and KKSp) based on the exis-
tence of consistent string theories with D-branes carrying quaternionic and symplectic
Chan-Paton bundles. Moreover, we propose, based on their respective K-theories some
simple properties of these bifunctors. We also give some clues on how the appropiate
structures should be incorporated on the Kasparov modules entering the KKH-theory
definition. Similar arguments should apply to KKSp-theory.

As a matter of probe, we have applied this formalism, including the proposal on
positive RR charged orientifolds, to elucidate the existence of the so called ezotic
orientifold planes. These planes have been classified by K-theory, but in terms of
RR fields. A brane realization of exotic planes reveals a configuration of brane and
orientifold planes, for which it is possible to apply the present formalism. For the
considered cases, we have found that a brane classification of this planes is possible by
means of KK-theory. The results are also in agreement with the RR field classification.

In the orbifold case we reproduce the proposal in [29] in terms of equivariant Kg-
theory for a Zs-orbifold. Moreover, we argued that this prescription is valid for any
G-action by means of the spinor representation. In this way our formalism includes
every G-action that can be seen as a space-time rotation; including in particular the
Type IIB examples considered in [30] of flat orbifolds without discrete torsion (we
include an explicit example of the orbifold C3/Zs discussed in this reference and show
that Zs acts on C® by the spinor representation), where the explicit Kg-groups (and
hence KKg-groups) are calculated. We also recover the gauge theory in the unstable
Dg-brane systems of Type IIB string theory orbifold spacetimes.

In [25] the K-theory formalism is incorporated to the classification of fluxes in Type
IIB string theory which are not sourced by D-branes. It is then natural to incorporate
the KK-theory formalism for the classification of these fluxes. Some research in this
direction was addressed in [4 [7]

In [32] T-duality is explained in terms of certain isomorphisms of relative K-theory
for spacetime compactifications in T™. So, compactifying the spacetime, amounts to
define “relative KK-theory” [33] and the incorporation of T-duality would imply some
isomorphisms in the corresponding “relative KK-groups”. Some considerations about
T-duality and KK-theory has been discussed in another context in [7, 8] (for a recent
review see [34]). Finally, in analogy with [35] it should be interesting to incorporate
a topologically non-trivial B-field background to the KK-theory classification of D-
branes, leading to a twisted KK-theory.
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A Complex KK-theory

We start by defining a Kasparov moduld. Tet (A, B) be a pair of trivially graded,

separable, unital and complex C*-algebras. An odd Kasparov A-B module is a triple
(H37 ¢7 T)7 where

e Hp = B is the Hilbert B-module defined as follows:

B> = {(z) € H B | ZSCZSL% converges in B}.

n=1 k
e ¢: A— B(Hp)[Yis a unital *-homomorphism.

o T € B(Hp) is a self-adjoint operator such that
T? —1, [T,¢(a) € K(Hp)=B®K forallac A, (A.1)

where IC(Hp) is defined such that any pair of elements, x,y € Hpg, gives rise to
amap 0,,: Hg — Hpg given by 0, ,(z) = z(y, 2), for all z € Hp. Then K(Hp)
is the closed linear span of {O,, : =,y € Hp} and it is a closed two sided ideal
in B(Hp). Note that when B is the field of complex numbers, then IC(Hp) is
identified with the space of compact operators on Hp (denoted K), and Hp is
identified with the space of square summable sequences in the complex numbers.

An odd Kasparov A-B module is called degenerate if
T?° —1=[T,¢(a)) =0 forallac A. (A.2)
Now, we define some relations on the set of odd Kasparov A-B modules:

e Two triples (Hpg, ¢o, To) and (Hp, ¢1,T1) are called unitarily equivalent if there
exists an unitary operator U € B(Hp) with Ty = U*T1U and ¢g(a) = U*¢1(a)U
for all a € A.

5Though there are several approaches to Kasparov modules [17, I8, 20], we will use the Fredholm
picture which fills out our requirements for physical interpretations.

161f E is any Hilbert B-module for a C*-algebra B, we will denote as B(FE) the set of adjointable
operators i.e. the operators T : E — E such that there exist an operator T : E — E with (Ta,b) =
(a,TTh) for all a,b € E, and (a,b) is the B-valued inner product of Hp as a Hilbert B-module.
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e Let (Hp, ¢;, T;) be odd Kasparov A-B modules for i = 0,1; let (E, ¢, T) be an odd
Kasparov A-B®C|0, 1] module and let f, : B&C|0, 1] — B denote the evaluation
map f,(g) = g(t). Then (Hg, ¢, To) and (Hp, ¢1,711) are called homotopic and
(E,¢,T) is called a homotopy if (E ®;, B, f;o ¢, f; (T)) is unitarily equivalent to
(Hp, ¢i,T;), i = 0,1, where f; (T')(a) := f,(T(a)).

o If £ =C([0,1],Hp) and for all a € A the induced maps t — Ti,t — ¢;(a) are
strongly x-continuous, then (E,¢,T) is called a standard homotopy. When in
addition ¢, is constant and 7} is norm continuous then we say that (E,¢,T) is
an operator homotopy.

e In the definition of the group K K*(A, B), two odd Kasparov modules (H, ¢;,T;),
i = 0,1 are defined to be equivalent (and denoted ~,,) if there are degenerate
Kasparov modules (Hg, ¢}, T!), i =0,1 such that (Hg ® Hp, ¢; ® ¢, T; & T)),
i = 0,1 are operator homotopic up to unitary equivalence. Then KK'(A, B) is
the set of equivalence classes of odd Kasparov modules under ~,.

The other K K-group KK (A, B) = KK°(A, B) is the set of equivalence classes of
Zo-graded triples (H, ¢, F'), called even Kasparov A-B modules, with

N - T
A=toot, d=digno)  F=( 70 ) (3

where H; (¢ = 0, 1) are Hilbert B-modules, ¢; : A — B(H;) is a unital x-homomorphism
fori = 0,1 and T' € B(Hy, H;) is an adjointable operator such that

T'T—1, TT'—1, Téola)—¢i(a)T € BeK forallac A.  (A.4)

The grading is induced by the standard even grading operator diag(1l,—1) where
we identify B(Hg) = My(M(B®K)) = M(B®K), where M(B ® K) is the multiplier
algebra of B ® K and My(A) is the C*-algebra of 2 x 2 matrices with entries in the
C*-algebra A.

The group K K°(A, B) is defined as the set of equivalence classes of even Kasparov
modules with the equivalence relation ~,, defined above.

It can be proved that KK'(A, B) = KK°(A, B® CI') with CI' being the complex
Clifford algebra generated by {1,e;}, where ¢ = 1. This is the approach we will
take for the definitions of the real, Real and equivariant K K-groups for real, Real C*-
algebras and G-algebras. In general, one can define higher K K-groups as K K" (A, B) =
KK(A, B® Cl"), but periodicity mod 2 tells us that the only K K-theory groups are
KK° and KK'.

B Orthogonal (real) KK-theory

The real K KO-group is defined similarly as above, but substituting complex objects by
real ones (real C*-algebras, real Hilbert B-modules, etc.). In other words, the structures
are defined over the field of the real numbers instead of the complex numbers field.
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To define the higher real K KO-groups we need to define a real C*-algebra structure
in the real Clifford algebra CI™™, where CI"™™ is generated (as an algebra over R) by
{e; € R"™™},_;  nim With the relations

.....

eiej +eje; =0 (i # J),
e2=—1 (i=1,..,n), (B.1)
e2=1 (i=n+1,.,n+m).

2

The C*-algebra involution is defined on the generators {e¢; € R"*™} as follows:

e =—e¢ (i=1,..n),
e;=¢€ (i=n+1,..,n+m), (B.2)
(e1---e))" =e/---ef,

and extending it by linearity.
It can be shown [I7, 20] that KKO(A ® CI"™, B ® CI"*) depends only on (m —
n) — (s —r), so we can define with no ambiguity:

KKOpnir_s(A,B) = KKO(A® CI"™, B® CI'®). (B.3)

Thus, for n € Z we define

. KKO(A,B® CI"’) n>0
KKO™(A,B)= KKO,(A,B) = { KKO((A B& (3107—")) 00 } (B.4)

The K KO,-groups are periodic mod 8.
Both, complex and real K K-theories share the following crucial property called
Bott Periodicity:

KKOMX,Y)=KKO*"(X x R",Y)=KKO*™(X,Y x R™), (B.5)

where R" stands for Co(R™). In general, for any locally compact topological spaces
X and Y, we denote KKO™(X,Y) = KKO"(Cy(X),Co(Y)), where Cy(X) (Co(Y)) is
the C*-algebra of continuous real (or complex when we are dealing with KK-groups)
valued functions on X (Y'), vanishing at infinity.

B.1 K K-Theory applied to D-Branes

Suppose we have a spacetime of the form X x Y (with dimY = ¢+ 1) and an unstable
system of an infinite number of Dg-branes extended on Y, in Type II string theory. It
was proposed in [I] that the solitonic configurations (which turn out to be D-branes)
of this system are classified by the complex KK-groups: The KK'(X,Y)-group for
non-BPS Dg-branes and K K°(X,Y)-group for a Dg- Dq system (Dq denotes an anti
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Dg-brane) of stable Dg branes. The grading for the even Kasparov modules described
in the definition of the KK°-group is associated with the Dg- Dg-branes.

Now, we will review the way KKO-groups are applied to classify D-branes in Type
I string theory.

In [12] it is argued that the K-theory group classifying Dd-brane charges inside
the worldvolume of an unstable Dg-brane system in Type I string theory is the real
K-theory group KO }(Y), where Y is the worldvolume manifold of the unstable sys-
tem. The proposal in [0] is that the group that correctly classifies D-branes stretched
along both longitudinal and transverse directions to the unstable Dg-brane system is
KKO"(X,Y) where X and Y have the same meaning that in the complex case.

The elements of KKO°(X,Y) can be interpreted in the same way as for Type II
string theories in terms of Dg- Dg-brane system (for ¢ = 0,9) wrapped in Y.

In general KKO(Cy(X),Co(Y) ® CI™™) consists of equivalence classes of triples
(H, o, F) where H = Co(Y)>® @ CI"™, ¢ Co(X) — B(H) is a *-homomorphism, and
F is a self-adjoint operator in B(H) = B(Cy(Y)® ® CI"™). We have the additional
requirement that g(a)(a € Co(X)) be even and F' odd with respect to the Zy-grading.
In this way, we can write:

F = Z T, ® v, (E(a) = Z D, ® w,, (B.6)

7,1
wrE€Cleyen

where T,., @, € B(Cy(Y)), w, and v, span the sets of even an odd elements in CI"™™
denoted as CI;7 and CI.

even

B.2 Field content in unstable Type I non-BPS branes

As it was studied in [0], the field content representation of an unstable non-BPS Dg-
brane in Type I theory can be elucidated from the real Clifford algebra since in this case,
as can be seen from B.1, the tachyon and scalar fields satisfy some requirements. The
tachyon field is an odd self-adjoint operator, while ¢ is an even self-adjoint map. This
fixes their representations under the gauge transformation, which is an even unitary
transformation on the Hilbert space H. For completness we reproduce the results
obtained in [6] in Table Bl

For Dg-branes in orientifold backgrounds like those studied in this paper (O1~ and
0O57) it suffices to compute the fixed point algebra (PCI™%)g, or (PCI®")g,. These fix
point algebras are in general of the form CI™° or C1%" (with the only exception of
algebras related to non-BPS D1 and D9 branes). This algebra fixes in turn the field
content and gauge group for each case. This was explicity done in [6] which results are
summarized in Table B

C Clifford Algebras and Real KKR-Theory

In this appendix we will describe the additional structure in the Clifford algebras which
is necessary for the definition of the KKR bifunctor.
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‘ Dq H crem ‘ 10} ‘ T ‘ Gauge group ‘
DC1) || CP° adj. g U(o0)
D7
D0 || CI*° [T H O()
D8
D1 || CI™ | (1m),(@,1) | @, 8) | O(cc) x O(x)
D9
D2 | Ci*! [ [ O(o0)
D3 | oP2 od. 0 (o)
D4 || CI%? [ Sp(o0)
D5 [ O | (IH.E10 | ©.0) | 5900) x 5(x)
D6 | CPPY H H Sp(o0)

Table 3: Field content of unstable non-BPS Dg-branes in type I theory and the relevant
real Clifford algebra, as obtained in Reference [6].

C.1 Even and odd parts of the Real Clifford algebra

In the Clifford algebra C'I™™ there is a natural grading induced by the map « : CI™™ +—
Cl™™ acting on the generators like a(e;) = —e; for all @ = 1,...,n + m. Then, «
is extended to the whole Clifford algebra by linearity. In this way, the real Clifford
algebra splits in even and odd parts, defined as the eigenspaces with eigenvalues 1 and
-1 respectively, i.e.

crm = (Cln’m)even > (Cln’m>odd7 (Cl)

where a € (Cl""™)eyen if a(a) = a and a € (Cl™"™)pqq if a(a) = —a.
A general element of C1™™ can be written as

n-+m

a=a"e, +a"e; i, +-+a st (nt-m) g E at e, (C.2)

k=1 i1<io<---<ig

where €;, i, =€;, €, ... €.
It is easy to show that the even and odd parts can be expressed in the following
way:

(O™ owen = {0 € C1™)a = 0"+ a"e,yi, + a5y i+ }
(CI"™oaa = {a € Cl™a=a"e; +a" e + ... | (C3)

From now, we will concentrate on the algebras C1™° [

17Notice that for the complex Clifford algebra CI™, we have CI" = CI™"° @ C = C1%"™ @ C. Then all
expressions and facts in this appendix are valid for the analog ones for CI1%".
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The grading in the Clifford algebra C1™° induce a grading in the complex Clifford
algebra CI™ as follows:

clr = CcI"eC
= ((CI")eyen ® (C1™")oaa) ® C
= ((CI")even @ C) & ((C1™°) 00 ® C)
= CI™0 @ CIy. (C.4)

Hence, an element a in the even part of Ci" = CI™ is just written as o & (8 ® 1) with
a,3 € Ol . and a similar expression for the odd part.

even’

C.2 Fixed point algebra
An element a in the complexified Clifford algebra CI* = C1™° ® C is given by

a=a®(fR1i), (C.5)

where o and 3 are elements of the real Clifford algebra C1™°.

Suppose that there is a Real involution defined on CI™, such that it is now a Real
algebra denoted PCI™ (as explained in Sec. 3.2, the involution is given by the action
of the orientifold plane on the generators of the algebra and extended by linearity).

On the other hand we have

eI = P (CIM ®C) = PCI" & T, (C.6)

where C denotes the field of complex numbers with Real involution defined by usual
complex conjugation and PCI™° denotes the Clifford algebra CI™° with some Real
involution (again, this involution is determined by the orientifold plane on the genera-
tors of the algebra and extended by linearity). Then it is enough to select the proper
involution on the generators of C1™° to know the involution on PCI™°.

The fixed point algebra of PCI™° is defined as the set of elements in PCI™° which
are invariant under the involution@, ie.

( p(Cl"’O)ﬁX ={a€ PCI" a=a=Ty_p(a)}, (C.7)
where Zg_,(i) = —i. Hence an element of the fixed point algebra must satisfy the
following constraint

aeBe=ae@e (i) =ad((-F) i) =ad® (B1). (C.8)

As a trivial example, consider p = 9. Then for any unstable Dg-brane systemlzgl,
we have ¢ < p. Following the criteria explained in Sec. 4.1, we define the involution to

8This definition applies to any algebra with some Real involution.
YFor simplicity, suppose ¢ > 2.
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be the trivial one in each generator of the relevant Clifford algebra C1%9~!. Then, by
(C8) we identify

(cioa), = et (C.9)

fi

This is expected since in an 09~ -plane background, i.e. in Type I theory, the whole
nine-dimensional space is a fixed point under the orientifold involution and hence,
D-branes are characterized by orthogonal Clifford algebra, as shown in [6].

As explained in Sec. 4, the tachyon, the scalar fields and the gauge transformation
on the unstable Dg-brane system all belong to the fixed point algebra and to some of
the even or odd parts of °CI™° for some n. It turns out that for selecting an element
with some of these properties, it is enough to compute the fixed point algebra (as
explained above), which will be isomorphic to a real Clifford algebra CI™* for some r
and s29. Then we just need to compute the natural even and odd part of Cl™* as a
Clifford algebra as explained in C.1.

D Equivariant KK-Theory

In this appendix we will describe the pertinent modifications to the KK-theory bifunc-
tor described earlier to define the equivariant KKg-theory, which turns out to be the
appropiate tool for the classification of D-branes in orbifold singularities. A C*-algebra
A is called a G-algebra if there is a compact group G acting on it by the automorphism
group, i.e., by a map a : G — Aut(A). In this appendix all C*-algebras are required
to be G-algebras.

The G-action is said to be continuous if a : G — Aut(A) is continuous. This
definition is rephrased by requiring that the induced map G x A +— A : (g,a) — g(a) is
norm continuous, where A is realized as an operator algebra with the strong operator
topology.

By the Hilbert G-module Hp we mean the Hilbert B-module Hp together with a
linear action of GG, such that:

e g(xb) = g(x)g(b) forall ge G, x€Hp, beB,

e (9(x),9(y)) =g((z,y)) forall geG, wx,y€Hp,

where (z,y) is the B-valued inner product of Hp as a Hilbert B-module. We have the
additional condition that this action be norm-continuous i.e the map g — ||(gz, gx)||,
x € Hp is norm continuous in the strong operator topology. An element x € Hp is
said to be invariant if g(z) = « for all g € G.

In B(Hp) there is an induced natural action as follows: If F' € B(Hp), then g(F) is
defined as (g(F))(z) = g(F(g~*(x))), g€ G, x € Hp. Thisinduced G-action is not
norm continuous in general and those F' for which this holds are called G-continuous.
They make up a C*-subalgebra of B(H ) which contains K(Hp).

20Notice that on CI™* there is not a Real involution anymore and both r and s depend on the Real
involution defined in PCI™° or equivalently in CI™Y.
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Now, consider all even Kasparov G-modules (Hp, ¢, F'), i.e. the set of even Kas-
parov modules such that:

e Hp is a G-Hilbert B-module,
e ¢: A B(Hp) is an equivariant x-homomorphism,
e I € B(Hp) is an invariant (in particular, G-continuous) element.

Then the equivariant KKg-group, denoted K Kg(A, B) is defined as the set of
equivalence classes of even Kasparov G-modules under the equivalence relation ~,y,
defined exactly as in appendix A, but with the additional condition that the operator
U € B(Hp) generating the unitarily equivalence relation be invariant under the G-
action.

The higher KK -groups K K[4(A, B) are defined as before, i.e K K(4(A, B) = KK} (A, B®
Cl™) where G acts trivially on CI"™ and again they have periodicity mod 2.

The KKg-groups share the analog of the property of K K-groups:

KKE(X,)Y)=KKE (X xR, Y)=KK5L™(X,Y x R"), (D.1)

with the additional requirement that G acts on R" by means of the spinor representa-
tion, i.e. by a group homomorphism G +— Spin,,.

One of the most important properties shared by all versions of Kasparov K-theory
is additivity:

KKg(A, Bi®By®- - -®B,) = KKg(A, B1)®KKg(A, By)®- - - ®KKg(A, B,).(D.2)

A similar expresion also holds for the first of the entries in the KKg-functor.

We mention it here because it is particularly important for calculating the low
energy effective gauge theory living in the worldvolume of an unstable D-brane system
placed at an orbifold singularity.
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