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Abstract

We consider the operaterA — « grad div acting on an exterior domaif? in R” (with « > 0 and
n = 2, 3) subject to Dirichlet boundaryonditions. The spectral resolutidor the operator is written
in terms of an expansion of generalized eigenfunctions.
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1. Introduction

In this paper, we consider the self-adjoint operdtodetermined by the differential
expression

—A —agraddiv (1)

with « > 0 acting on an exterior domain with smooth boundary, and subject to Dirichlet
boundary conditions. By an exteridomain, we mean a domai2 ¢ R" given by the
unbounded component of the complement of a compact obstackhe expression (1)
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arises in the theory of elasticity; for instance, the equation of equilibrium for isotropic
bodies is

Au(x) + grad divu(x) =f(x).

1-20

The unknown vector fieldi(x) describes the displacemt of each of the points inside
a body after the deformation of this body. The constanknown as théPoisson ratig is
the ratio of the compression in the transverse direction to the extension in the longitudinal
direction for the material; the vector-functidéx) is determined by the internal forces in
the body. We refer to [11] and references therein for details on the physical background of
this setting.

We deal in this work with the spectral propertiedgfour main result is Theorem 5.1.
In there, we write the spectral projections of the operatan terms of a collection of
generalized eigenfunctions associated to the continuous spectrum. The key step in this con-
struction is an expression for the resolvent.df terms of this collection of eigenfunctions
(Theorem 4.2). The methods used follow, for the main part, those applied by N. Shenk in
[16] for the analogous situation for the Laplace operator. Shenk writes the spectral res-
olution of the Laplace operator on a domaih exterior to a compacf? surface with
Dirichlet conditions, in terms of an expansion of generalized eigenfunctions. In [16], the
spectral projectiong’, for the operator- A acting ons2 are written in the form

1 n/2
(E fH(x)= <E> / w+(x,$)/w+(y,§)f(y)dyd§, (2)
512<A 2

wherew_ are the generalized eigenfunctions known in the literature gsdttarbed plane
waves These are solutions to the equation

(—Awy) (-, &) = E2wy (- &) ©)

subject to zero (Dirichlet or Neumann) boumgaonditions, and such that the functions
w, (x, &) — e”¥¢ satisfy Sommerfeld radiation conditions. In the present work, the role
of the perturbed plane waves is played by Hemtion of vector valued functions which we
call theperturbed elastic plane wavesid denote by ; (x, p) (see Definition 3.1).

In this scheme of things, one has an operator acting on a Hilbert §pacel a collec-
tion of generalized eigenfunctions associdted which determines an integral operator
(in our example, this is the operatidrdefined in (26)). For the operatdf the following
two questions naturally arise (see, for instance, [7,16]): the first one, knoaaonasliete-
ness is to determine whethe&r*i/ equals the identity ort{; the second one, known as
orthogonalityis to determine whether the operatéris onto. Completeness is an imme-
diate consequence of Theoréni; orthogonality is related to the unitary character of the
scattering matrix (e.g., [7]), and is one of the deep connections of scattering theory with
the expansions of generalized eigenfunctions.

Expansions of generalized eigenfunctions have been used widely in the study of spectral
and scattering properties of differential operators with continuous spectrum; this subject
dates back to the middle years of the 20th century (we refer to [2,9] for extensive discus-
sions on this). In particular, eigenfunction exgans for partial differential operators on
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exterior domains have been applied since the nineteen sixties; for example, the Laplace
and Schrodinger operators are treated in [6,7,16,17,20], among others. In elasticity, for

different settings than ours, eigenfunction expansions techniques related to the continuous
spectrum have been developed in [15], and more recently in [3-5,19].

The spectral resolution of the operator (1) acting on an exterior domain with Neumann
boundary conditions, is written in terms of axpansion of generalized eigenfunctions in
a recent paper by M. Mabrouk and Z. Helali¢4d&2, Theorem 13]). The class of domains
considered by Mabrouk and Helali is wider than ours, and corresponds to domains which
satisfy a condition which they call tredastic local compactness propeftye refer to [12]
for the definition). The methods used in [12] are independent to those in the present work.
In particular, the radiation conditions consiéd in the construction of the perturbed (dis-
torted) plane waves are different. Also, the generalized eigenfunctions in [12] are some
3 x 3 matrices (called thdistorted plane waveis that reference) that satisfy column-wise
equations analogous to (3) for elasticity; as a result of this, the formula in [12] corre-
sponding to (2) involves matrix multigations. Our choice of the vector fielts as the
eigenfunctions gives a formula for the spectral resolution which uses the inner product in
C3 instead; our approach gives an analogue to (2) which, we feel, turns out to be quite
natural. Even though the expansions obtained by both approaches should be equivalent, it
does not seem to us that this can be verified in an obvious or straightforward manner.

Our work is organized as followsiSection 2 we define the operatorin Section 3 we
introduce the collection of generalized eigenfunctions. In Section 4 we give the expansions
for the resolvent. In Section 5 we finally give the spectral representation in terms of the
eigenfunctions.

2. Notation and preliminaries

We will use standard boldface notation to distinguish vectors from scalars. For a generic
Hilbert spaceH, we will denote its internal product iy, -)7¢, and take it conjugate linear
in the second entry. We will writéD" H for the direct sum of: copies ofH. The inner
product inC" will be denoted, -).

Below, we define the operatbr.

Definition 2.1. Let O be a compact obstacle R" with C* boundary, and lef2 be the
connected unbounded componentR®sf\ O. We defineL as the operator given by the
expression 1 acting of2, subject to Dirichlet boundsg conditions, with domairD given

by

p={Feri@:C]| Jim F(x)=0forxo 02 andL F e L*(«2: ).

It is well known that the spectrum af is absolutely continuous and that it is given by the
positive real axig0, co) (e.g., [8,12,18]).

We will denote byL g the self-adjoint realization of the expression (1) acting on the
whole of R".
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Throughoutthis paper, we will restrict ourselves to the ease3; the results and proofs
for the case: = 2 are analogous and are given with detail in the author’s thesis [13, Sec-
tion 3.4]. A

We will denote by the Fourier transform df:

1 >
R3

F(p) =
For each vectop = (p1, p2, p3) € R3 with p1 and p» not simultaneously equal to 0, we
will use the notation:

—Pp2 —pip3
1 Ip| 1
p

= ﬁ pr1 |, p= ﬁ —p2p3
VP1tTDP; 0 \ P1+ D3 p%—i—p%
We observe that, for eagh, the vectorsp, p and p are perpendicular to each other and
have the same Euclidean norm.
Elastic waves travel with two different velocities: one corresponding ttothgitudinal

wavesand the other corresponding to ttiansverse waveg.g., [10]); due to this, it will
be convenient to introduce the following notation:

1
Vita’

With this, we can introduce the collection of so-callethferturbed elastic plane waves
defined forx e R3 andp e R3\ {(0, 0, p)} by

c1= co=c3=1.

; p ; pt
Vio(x, p) = e/ tp = Voo(x, p) = /2P
[Pl |p|
Vao(x, p) = el’Cs(x,P)L.
| |pl

It can be verified (e.qg., [13, Section 3.1]) that these vector fields are formal solutions to the
equation

L Vo, p)=1pI*Vjo(-, p).
We note thaV; o(x, -) can be extended continuouslyE3 \ 0 only for j = 1. However,

all these elastic plane waves are defined and continuous outside a zero-measure subset of
R3 x R3, and|V o(x, p)| = 1.

Definition 2.2. Let s € C. We say that a vector field satisfies outgoing-elastic radiation
conditions, if it can be decomposed as the sum of a gradient compofiémius a curl
component), both of orderO (1/r) asr — oo, which satisfy

8u(é.’) 1
5 (x)—iclsu(g)(x)za(—>,
r d r — 00. 4)
au© . 1
o) = isu©(x) :0(—),
r r
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We say thau satisfies outgoing-elastic radiation conditions if the same statement holds
true with the sign~' replaced by 4+’ in (4).

Note. A definition of radiation conttions for general hypo-elliptic operators and systems
is given in [22]. Definition 2.2 coincides with it in our particular case.

3. The generalized eigenfunctions

Let H be a continuous vector field defined on the bounda®; and lets € C. It is
known (e.g., [10]) that there exists a unique solution to the problem

{[L —s?Ju(x)=0, xe, 5)
u(x):H(x), anQ,
satisfyings-outgoing elastic radiation conditions. The same statement is true for the in-

coming conditions.
Taking this into account, we define

W;(x, p;s)=Vjolx, p) +U;(x, p;s),

whereu; (-, p; s) satisfiess-outgoing elastic radiation conditions and is solution to the
problem (5) withH(-) = =V o(-, p).

Estimates foru; (x, p; s) can be given (see, for example, [22, Theorem 1 in Chap-
ter VII]); in particular, for each fixedx and s, the vector fieldsW;(x, -;s) are in
L2 (R3; C3).

It will be convenient to consider the vector fields; (x, p; s) as defined for alk € R3
by setting

W;(x, p;s)=0, forallx ¢ 2.

By definition, the vector field®V ; (x, p; s) satisfy formally the equation
(L —s?)W;(x, p;s) =(IpI* = s*)V0(x, p), x €,

and homogeneous Diritdt boundary conditions ias2.

Definition 3.1. Let V; (x, p) be given byV ; (x, p) =W (x, p; | p|). We call these vector
fields the perturbed elastic plane waves.

The elastic plane waves defined above are solutions to the problem ()l witd.

The vector field$V ; (x, p; s), and in particular the elastic plane waves, can be written
in the form (e.g., [10, Theorem VI.13]; see also Sections II.1, Il.2 and 1.2 in the same
reference):

1
W, pis) =V p) + —— fA(x, ¥ )0,y p ) dy. (6)
(ZI)T&Q

Here, ¢ is a density vector valued function, aAds the 3x 3 Green matrix defined as
follows:
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For a vector fields defined on a surfacg, let I'; and7 be given by

eiclr eir
Fj(x,y;s)z—graddiv< >+cur|cur|(—>,
r

,
au .
Tu=—23—+(a+1)nd|vu— (n x curlu),
n

wheren is the vector normal t§, pointing outwards; then, thgth row of A is defined
by 7T;. The operatof is known as thetress operatorThe vector fields given by the
columns of the matrixA are solutions—with respect to either variable—of the equation

(L —sZ)A(j)(x, y:s)=8(x —y).

One consequence of (6) is that & are of the form

xX p eferr x p eicer
Wj(x,p;s):Vj,o(x,p)—i-Cj(—, —) +d;( -, —
rolpl/) r rolpl) r

+gS(xap)a (7)

wherec; andd; are of clasg”">° and for every fixegp the vector valued functiog (x, p),
together with its partial derivatives of all order, af&r—2). SinceL —s? is elliptic, this
implies that, for everyn € N, g,(-, p) belongs to the Sobolev spaég™($2; C") (e.g.,
[1, Theorem 10.7]).

4. Expansionsfor theresolvent

In this section we will express, in terms of the vector fielilg andV ; defined above,
the resolvent oL ats € C with Ims > 0; this is Theorem 4.2. We will also obtain an
expression for the norm of the resolvent (Proposition 4.4) which will be useful in the next
section.

We first prove the following technical lemma.

Lemma4.1. For F € L2(R3; C3) define

AP =plp. Fp)), AP =pp . F), A (p)=b(p.F(p)).
Then

AL (p) + AP (p) + AL (p) = ZAF(p).
Proof. We first note that

AL (p) = p(p1F1(p) + p2F2(p) + p3F3(p)) = i pdivF(p) = —grad divF(p).
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In a similar way, forp # (0, 0, p) we have:

) P2 p;  —pwz2 O\ (Fip)
AP (p)=— | e 20| 22 .
P17 P2 0 o o \Fp
. p2p3  pipap:  —pip3(p?+ P\ [ Fi(p)
AP (p) = . pip2p3  pips —pap3(pi+p3) | | Fa(p)
1 2

—pips —p2ps (pi+p3)? F3(p)
Summing up these matrices yields the equality

p3+p3 —pip2  —pip3 F1(p)

2 3
AY D +A () == —pir2 PE+p3 —peps || Fa(p)
—pips  —p2p3  pi+p3 Fs(p)
—curl curl F(p). (8)

The lemma then follows from the identity (see, e.g., [14]):

A =graddiv—curlcurl. a

Theorem 4.2. Let s be any complex number with positive imaginary part, andHet
Coo(82; C3). Then, the resolvent of the operatomt the points? is given by

3 3
Cj W (x, p;s)
(RL(SZ)F)(x) =Z<é> /“17'27_52/(F(y),vj)0(y,p))dydp. 9
j=1 R3 2
If H e C3°(intO; C3), then
W. .
f% (H(»),V,.0(y, p))dydp =0, foreachj=1,2,3, (10)
ple—s '
R3 R3

Proof. From the definitions oA,(:j) andV o, the following relation holds:
(27.[)3/Zeic_,'(x,p) .
Vjo(x, p) /(F(y), Vjo(y. p))dy= TmzAL”(c,p).

SinceF e C3°(intO; C3) andV; o(x, p) is bounded we can integrate ovgyin order to
obtain:

2n)3¥2 [ elxp)
f Vjo(x, p) /(Fu),vj,o(y,p))dydp: 3 / T AL (p)dp.
R3 2 J R3
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From this and Lemma 4.1, it follows that

3 .\ 3
Z(%) / V,o(x, p) / (F).Vjo(y. p)) dydp
R?’

j=1
eix.p)

AR 1 .
__ ie.p) g
(2,,)3/2/ |p|2 dp = 2 )3/2/F(p)e Pldp=F(x). (11)

R3
On the other hand, the expression in thghtihand side of (9) makes sense, because
Fe CP(2;C3% and W(x, -;5) € L2 (R% C3). Also, sinceF € C(£2;C3 and
W; (x p; s) vanishes f0|x € 982, that expression lies in the domain lof applying then
L —s?to (9) yields, forx € £2, the left-hand side of (11) and equality (9) follows.

To prove (10), we first note that the expression (11) remains true if we replaged.
Then, the left-hand side of (10) vanishes if we appfy—s? to it; but this gives the desired
result, sinces? ¢ R cannot be an eigenvalue of the self-adjoint operatacting in the
obstacle. O

We will now introduce an operatof : L2(R3; C3) — 3 L2(R?), that will play in this
work the role played by the Fourier transform in [16]:

32

1 A
(UoF),(p) = m(F(clm p), (qu)z(p)=m(F<p),pi)

1 N
UoF)3(p) = m(F(p), ).

Theorem 4.3. Uy is a unitary operator fron.2(R3; C3) onto° L2(R3).

Proof. First we consider an arbitrarg e C3° (R3) and note that

S iy’ f(ealph
Uoograd f)i(p) = T |(gradf(C1p) p)= #mm
=i\ p| f(c1lp)). (12)
In a similar way, the equalities
Uograd f)2(p) = Uograd f)z(p) =0, (13)

follow from the fact thatp and p are both perpendicular tp.
On the other hand, we have for any vector figld C3°(R3; C3):

Uocurl F)y(p) = (curl F(c1p), p)

1
Jeilpl
i

: 0 —p3 p2\ (Fup)
= r;:'—l(pl P2 p3)( P3 0 —Pl) (Ifz(P)) =
-p2 p1 0 F3(p)
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Now, if we takeG = (32 f, —91 f, 0) = curl(0, O, 1), we obtain forp # (0, 0, p):
(Uocurl G)2(p)

1 ——
= W(CurlG(p),pﬂ

1 0 —p3 p2 pzfgp)
= (=p2 p1 0O)| p3 O —p1 || —-pif(p) |=0.
Ipl\/Pi+ P2 -p2 p1 O 0

Just in the same way we can derive, fog (0, O, p), the relation

Uocurl G)s(p) =/ pi + p31p| f(p).
Proceeding just like above with the vector fi&dl it can be seen that fgr £ (0, 0, p):

UoG)2(p) = —i\/ P2+ p3 f(p),  UsG)3(p) =0.

Forp = (0,0, p), since for thisp we have thaé(p) =0, the equalitiestocurl G) ; (p) =
(UoG) j(p) = 0 hold true.

From all this discussion we can conclude thigthas dense range @3 L2(R3).

Now, due to relations 12 and 13, proving tbtmaps the vector fieldrad f isometri-
cally into @3 L2(R3) reduces to verify that

3 / 1P| fc1p)| dp = / (grad f(x), grad f (x)) dx. (14)
R3 R3
By the divergence theorem and the unitarity of the Fourier transfori’dR3), we have:
f (grad £ (x), grad f (x)) dx = — f fE)Af(x)dx = - / f(pAT(p)dp
R3 R3

R3

and (14) follows.
Similarly, for G as above:

112 2 .00, = 102.F 122 g0, + 101 12 2 gy = |27 | T2y + 927 [ 72qze,

A2
= / (PE+ P91/ (P)["dp = oG 32 s
R3
Finally, for the vector fielctur| G = curl curl(0, O, f), we have:

” curl G||i2(R3;C3) = H @?f ”iZ(RS)"'HaTafS\inZ(Rs) + H3;2\f + a;;f”iZ(RS)

A 2
= / (P2 +P3) 1P| ()| dp = o curl G2 5 -
R3
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The collection of vector fields
lorad f | f € C§°(R®)} U {curl F| F e ¢ (R%; C3)}

is dense inL?(R3; C3) (e.g., [23]), so that the méd extends isometrically to the whole
of L2(R3; C3). As we have already proved that it has dense range, it must be unitary.

In the proposition below, we use the operdtfgrto obtain an expression for the norm
of the resolvent of..

Proposition 4.4. For F e C3°(£2; C3) andIms > 0, let

Bé;')(p;s):(c_l)g/z/ (Fe). W, pis))

21 |p|2 —s2

Then, the norm of the resolventlofat the points 2 is given by

3
H R (5 Z)FHiZ(Q;@) = Z” B|(=])(' :5) ||L2(R3)’
j=1

Proof. ForF andG in C§°(£2; C3),

(F, RL(%)G) 20.c9) = Z / Fi(@)[RL (s%)G], (x) dx. (15)

k=1g
Denote thekth component ofV ; with respect to rectangular coordinatesWy ;. Theo-
rem 4.2 implies that theéth component oR (s%)G is

3

o\ 3
[RL(SZ)G],((M—Z(;—]’T) / Harh pio) / G(). Vo, p)dydp
/= R3

|pl? —

32 r Wikx, ps)
—Z(ZN) / AL o) ) dp

whereG' is the extension o6 to the whole ofR3 made by taking it to be identically 0 in
the obstacle.

SinceG’ € C(R3; C3), we have that eaclifoG'lx is in S(R3), the Schwarz class of
C*°-smooth functions of rapid decrease; we can then substitute the above equality into the
right-hand side of (15) and interchange the order of integration, to obtain:

3 ¢ 3/2

3 3/2
Z( ) / UeG'1;(p) / (F(x), W (x, p; 5)) dx dp
j=1 2

R3
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3

=Y / BY(p: 9)UoG); dp
j=l R3

= (BF( S), @)@3 L2(R3)

where, for the sake of briefness, we have written

3
Be(-15) = {B (1), B2 19). BE (19} e P LA (R). (16)

We extendR, (5 2)F to the whole ofR3 by defining it to be identically 0 inside the obstacle;
we can then write the identity

(RL (Ez)Fs G/) L2(R3;(C3) = (BF(’ 5 S), Z/W)@3 L2(R3)' (17)

ForH e Cg°(intO; C3), in a similar way as above and by means of (10), we can see
that

(BE(-; 9),UoG) =0.

D’ L2AR3)
So, formula (17) is also valid if we repla& with H.
Sincellp is unitary, this means that

Uo R (5%)F =B (3 5) (18)

and the proposition follows. O

5. The spectral projections
Now we are ready to state and prove our main result.
Theorem 5.1. Let A > 0. For ¢ > 0, denote byB(¢) the ball of radiust and center at the

origin. The spectral projectiong;, (L) are given by

3, .3
(EA(L>F)(x>=Z<%> | Vi) [0V 00 p) dyap.
=1 B(/A) Q

whereF is any vector field irC3°(£2; C3).

Proof. LetF e C3°(£2; C3), arbitrary. Denote by(v; €) the square root of — i€ lying in
the upper half-plane of.
With this notation, Stone’s fonula and Proposition 4.4 imply:

A
2 . € . 2
[ OF aaycs = 1. < [ IR0 = i0F }2(q,cs, v
0
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= lim —/”BF 18 (v 6))”@3L2(R3)dv (29)

whereBg is as in (16).
We observe that

B0 (s ) = (52) JIF0W, (5.1 5wz )y

(PP =v)Z+e
2

(20)

For every fixedy, the vector fieldV ; (y, p; s) is jointly continuous with respect tp ands;
also (e.g., [22, Chapter 8]):

lim W, (y, pi s(1pI% €) = V(3. p). (21)
Let

g (p; v) =/(F(y),Wj(y,p: s(v; €))) dy,

2
gV (p) = / (F. V(. p))dy
2

SinceF has compact support, relation (21) implies that

Sim_ g (p: Ip1?) =9 (). (22)

Then we obtain, for & |p|? < A, the equality
A

i € G (- )
0

Here, we have used the fact that, in the sense of distributions (e.qg., [21, Theorem 1.17]):

€ 1
lim —————— =s(|pl>—v). 24
My Gpr— e e 202 =) &9

By (19), (20) and Fubini’s theorem it follows that

2
|5 OF |32 9,05, = lim / B -+ 5 )| 5t e @

3
( )
P(2) i [

3 )
< €g9¢ (p;v)
Z( ) Ho+//n[(|p|2—v)2+e2] dvdp.

Jj=1
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From formula (23) and the fact thgt/) is in the Schwarz class of functions with rapid
decrease at infinity, we can apply the dominated convergence theorem in order to obtain:

£ (LEI? _ 3 Cj 3 i A e (p; ) dvd
H (L) ||L2(Q;C3)_Zl o7 eﬂ?)‘*’ 7t[(|p|2—v)2+62] vap
Jj= R3 0

3 3
_ €j ()
—]2(%) / 99 (p)| dp. (25)

B(%)
Now, we define an operator
3
U:L*(R3% C% - P L*(RY)
\3
by UF);(p)= <;—]’T> /(F(y), V;(y, p))dy. (26)
2

The operatot/ thus defined is an isometry frofi?(s2; C3) into the spac€p® L2(R3), as
follows by makingh — oo in (25). With this definition, formula (25) becomes

3
IEOF o = [ |wr; o dp.

=

By polarization we can recover the inner product for arbitiaré < Cy°(£2; C3), obtain-
ing:

3
(ExF, G) 120,03 = (EAF, ExG)2(.c3) = Z / UF)j(p)UGC);(p)dp.
=g

Substituting@(G) ; by its definition yields

3
(EAFye)LZ(Q;(C?’):Z / (UF)j(p)/(G(y),Vj(y,p))dydp.
T 2

SinceG has compact support, we can switch the order of integration, and it follows from
the arbitrariness o € C°(£2; C3) that

3
ASIOEDY f V;(y, p)UF),(p)dp.
=pm

Writing in the definition o/, we obtain the result stated O
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