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Abstract

We consider the operator−� − α grad div acting on an exterior domainΩ in Rn (with α > 0 and
n = 2,3) subject to Dirichlet boundary conditions. The spectral resolution for the operator is written
in terms of an expansion of generalized eigenfunctions.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider the self-adjoint operatorL determined by the differentia
expression

−� − α graddiv (1)

with α > 0 acting on an exterior domain with smooth boundary, and subject to Diri
boundary conditions. By an exterior domain, we mean a domainΩ ⊂ Rn given by the
unbounded component of the complement of a compact obstacleO. The expression (1
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arises in the theory of elasticity; for instance, the equation of equilibrium for isotr
bodies is

�u(x) + 1

1− 2σ
grad div u(x) = f(x).

The unknown vector fieldu(x) describes the displacement of each of the pointsx inside
a body after the deformation of this body. The constantσ , known as thePoisson ratio, is
the ratio of the compression in the transverse direction to the extension in the longit
direction for the material; the vector-functionf(x) is determined by the internal forces
the body. We refer to [11] and references therein for details on the physical backgro
this setting.

We deal in this work with the spectral properties ofL; our main result is Theorem 5.1
In there, we write the spectral projections of the operatorL in terms of a collection o
generalized eigenfunctions associated to the continuous spectrum. The key step in t
struction is an expression for the resolvent ofL in terms of this collection of eigenfunction
(Theorem 4.2). The methods used follow, for the main part, those applied by N. Sh
[16] for the analogous situation for the Laplace operator. Shenk writes the spectr
olution of the Laplace operator on a domainΩ , exterior to a compactC2 surface with
Dirichlet conditions, in terms of an expansion of generalized eigenfunctions. In [16
spectral projectionsEλ for the operator−� acting onΩ are written in the form

(Eλ f )(x) =
(

1

2π

)n/2 ∫
|ξ |2�λ

w+(x, ξ)

∫
Ω

w+(y, ξ)f (y) dy dξ, (2)

wherew+ are the generalized eigenfunctions known in the literature as theperturbed plane
waves. These are solutions to the equation

(−�w+)(·, ξ) = ξ2w+(·, ξ) (3)

subject to zero (Dirichlet or Neumann) boundary conditions, and such that the functio
w+(x, ξ) − e−ix·ξ satisfy Sommerfeld radiation conditions. In the present work, the
of the perturbed plane waves is played by a collection of vector valued functions which w
call theperturbed elastic plane wavesand denote byVj (x,p) (see Definition 3.1).

In this scheme of things, one has an operator acting on a Hilbert spaceH and a collec-
tion of generalized eigenfunctions associatedto it which determines an integral operatorU
(in our example, this is the operatorU defined in (26)). For the operatorU the following
two questions naturally arise (see, for instance, [7,16]): the first one, known ascomplete-
ness, is to determine whetherU∗U equals the identity onH; the second one, known a
orthogonalityis to determine whether the operatorU is onto. Completeness is an imm
diate consequence of Theorem5.1; orthogonality is related to the unitary character of
scattering matrix (e.g., [7]), and is one of the deep connections of scattering theor
the expansions of generalized eigenfunctions.

Expansions of generalized eigenfunctions have been used widely in the study of s
and scattering properties of differential operators with continuous spectrum; this s
dates back to the middle years of the 20th century (we refer to [2,9] for extensive d
sions on this). In particular, eigenfunction expansions for partial differential operators o
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exterior domains have been applied since the nineteen sixties; for example, the L
and Schrödinger operators are treated in [6,7,16,17,20], among others. In elastic
different settings than ours, eigenfunction expansions techniques related to the con
spectrum have been developed in [15], and more recently in [3–5,19].

The spectral resolution of the operator (1) acting on an exterior domain with Neu
boundary conditions, is written in terms of an expansion of generalized eigenfunctions
a recent paper by M. Mabrouk and Z. Helali (see [12, Theorem 13]). The class of doma
considered by Mabrouk and Helali is wider than ours, and corresponds to domains
satisfy a condition which they call theelastic local compactness property(we refer to [12]
for the definition). The methods used in [12] are independent to those in the presen
In particular, the radiation conditions considered in the construction of the perturbed (d
torted) plane waves are different. Also, the generalized eigenfunctions in [12] are
3× 3 matrices (called thedistorted plane wavesin that reference) that satisfy column-wi
equations analogous to (3) for elasticity; as a result of this, the formula in [12] c
sponding to (2) involves matrix multiplications. Our choice of the vector fieldsVj as the
eigenfunctions gives a formula for the spectral resolution which uses the inner prod
C3 instead; our approach gives an analogue to (2) which, we feel, turns out to be
natural. Even though the expansions obtained by both approaches should be equiv
does not seem to us that this can be verified in an obvious or straightforward manne

Our work is organized as follows: in Section 2 we define the operatorL. In Section 3 we
introduce the collection of generalized eigenfunctions. In Section 4 we give the expa
for the resolvent. In Section 5 we finally give the spectral representation in terms
eigenfunctions.

2. Notation and preliminaries

We will use standard boldface notation to distinguish vectors from scalars. For a g
Hilbert spaceH, we will denote its internal product by(· , ·)H, and take it conjugate linea
in the second entry. We will write

⊕n H for the direct sum ofn copies ofH. The inner
product inCn will be denoted〈· , ·〉.

Below, we define the operatorL.

Definition 2.1. Let O be a compact obstacle inRn with C∞ boundary, and letΩ be the
connected unbounded component ofRn \ O. We defineL as the operator given by th
expression 1 acting onΩ , subject to Dirichlet boundary conditions, with domainD given
by

D =
{

F ∈ L2(Ω;Cn)
∣∣ lim

x→x0
F(x) = 0 for x0 ∈ ∂Ω and L F ∈ L2(Ω;Cn)

}
.

It is well known that the spectrum ofL is absolutely continuous and that it is given by t
positive real axis[0,∞) (e.g., [8,12,18]).

We will denote byL0 the self-adjoint realization of the expression (1) acting on
whole ofRn.
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Throughout this paper, we will restrict ourselves to the casen = 3; the results and proof
for the casen = 2 are analogous and are given with detail in the author’s thesis [13,
tion 3.4].

We will denote byF̂ the Fourier transform ofF:

F̂(p) = 1

(2π)3/2

∫
R3

F(x)e−i〈x,p〉 dp.

For each vectorp = (p1,p2,p3) ∈ R3 with p1 andp2 not simultaneously equal to 0, w
will use the notation:

p⊥ = |p|√
p2

1 + p2
2


−p2

p1

0


 , p̃ = 1√

p2
1 + p2

2


 −p1p3

−p2p3

p2
1 + p2

2


 .

We observe that, for eachp, the vectorsp, p⊥ andp̃ are perpendicular to each other a
have the same Euclidean norm.

Elastic waves travel with two different velocities: one corresponding to thelongitudinal
wavesand the other corresponding to thetransverse waves(e.g., [10]); due to this, it will
be convenient to introduce the following notation:

c1 = 1√
1+ α

, c2 = c3 = 1.

With this, we can introduce the collection of so-called (unperturbed) elastic plane wave
defined forx ∈ R3 andp ∈ R3 \ {(0,0,p)} by

V1,0(x,p) = eic1〈x,p〉 p

|p| , V2,0(x,p) = eic2〈x,p〉 p⊥

|p| ,

V3,0(x,p) = eic3〈x,p〉 p̃

|p| .
It can be verified (e.g., [13, Section 3.1]) that these vector fields are formal solutions
equation

L Vj,0(· ,p) = |p|2 Vj,0(· ,p).

We note thatVj,0(x, ·) can be extended continuously toR3 \ 0 only for j = 1. However,
all these elastic plane waves are defined and continuous outside a zero-measure s
R3 × R3, and|Vj,0(x,p)| = 1.

Definition 2.2. Let s ∈ C. We say that a vector fieldu satisfies outgoings-elastic radiation
conditions, if it can be decomposed as the sum of a gradient componentu(g) plus a curl
componentu(c), both of orderO(1/r) asr → ∞, which satisfy


∂u(g)

∂r
(x) − ic1su(g)(x) = o

(
1

r

)
,

∂u(c)

(x) − isu(c)(x) = o

(
1
)

,

r → ∞. (4)
∂r r
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We say thatu satisfies outgoings-elastic radiation conditions if the same statement ho
true with the sign ‘−’ replaced by ‘+’ in (4).

Note. A definition of radiation conditions for general hypo-elliptic operators and syste
is given in [22]. Definition 2.2 coincides with it in our particular case.

3. The generalized eigenfunctions

Let H be a continuous vector field defined on the boundary∂Ω , and lets ∈ C. It is
known (e.g., [10]) that there exists a unique solution to the problem{[

L−s2
]
u(x) = 0, x ∈ Ω ,

u(x) = H(x), x ∈ ∂Ω ,
(5)

satisfyings-outgoing elastic radiation conditions. The same statement is true for th
coming conditions.

Taking this into account, we define

Wj (x,p; s) = Vj,0(x,p) + uj (x,p; s),

whereuj (· ,p ; s) satisfiess-outgoing elastic radiation conditions and is solution to
problem (5) withH(·) = −Vj,0(· ,p).

Estimates foruj (x,p; s) can be given (see, for example, [22, Theorem 1 in Ch
ter VIII]); in particular, for each fixedx and s, the vector fieldsWj (x, · ; s) are in
L2

loc(R
3;C3).

It will be convenient to consider the vector fieldsWj (x,p; s) as defined for allx ∈ R3

by setting

Wj (x,p; s) = 0, for all x /∈ Ω.

By definition, the vector fieldsWj (x,p; s) satisfy formally the equation(
L−s2)Wj (x,p; s) =(|p|2 − s2)Vj,0(x,p), x ∈ Ω,

and homogeneous Dirichlet boundary conditions in∂Ω .

Definition 3.1. Let Vj (x,p) be given byVj (x,p) = Wj (x,p; |p|). We call these vecto
fields the perturbed elastic plane waves.

The elastic plane waves defined above are solutions to the problem (5) withH = 0.
The vector fieldsWj (x,p; s), and in particular the elastic plane waves, can be wri

in the form (e.g., [10, Theorem VI.13]; see also Sections II.1, II.2 and I.2 in the s
reference):

Wj (x,p; s) = Vj (x,p) + 1

(2π)
n−1

2

∫
∂Ω

A(x,y; s)ϕj (y,p; s) dy. (6)

Here,ϕj is a density vector valued function, andA is the 3× 3 Green matrix defined a
follows:
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For a vector fieldu defined on a surfaceS, let Γj andT be given by

Γj (x,y; s) = − graddiv

(
eic1r

r

)
+ curl curl

(
eir

r

)
,

T u = −2
∂u
∂n

+ (α + 1)ndiv u − (n × curl u),

wheren is the vector normal toS, pointing outwards; then, thej th row of A is defined
by T Γj . The operatorT is known as thestress operator. The vector fields given by th
columns of the matrixA are solutions—with respect to either variable—of the equa(

L−s2)A(j)(x,y; s) = δ(x − y).

One consequence of (6) is that theWj are of the form

Wj (x,p; s) = Vj,0(x,p) + cj

(
x

r
,

p

|p|
)

eic1r

r
+ dj

(
x

r
,

p

|p|
)

eic2r

r

+ gs(x,p), (7)

wherecj anddj are of classC∞ and for every fixedp the vector valued functiongs(x,p),
together with its partial derivatives of all order, areO(r−2). SinceL−s2 is elliptic, this
implies that, for everym ∈ N, gs(· ,p) belongs to the Sobolev spaceHm(Ω;Cn) (e.g.,
[1, Theorem 10.7]).

4. Expansions for the resolvent

In this section we will express, in terms of the vector fieldsWj andVj defined above
the resolvent ofL at s ∈ C with Im s > 0; this is Theorem 4.2. We will also obtain a
expression for the norm of the resolvent (Proposition 4.4) which will be useful in the
section.

We first prove the following technical lemma.

Lemma 4.1. For F ∈ L2(R3;C3) define

A(1)
F (p) = p

〈
p, F̂(p)

〉
, A(2)

F (p) = p⊥〈
p⊥, F̂(p)

〉
, A(3)

F (p) = p̃
〈
p̃, F̂(p)

〉
.

Then

A(1)
F (p) + A(2)

F (p) + A(3)
F (p) = −̂�F(p).

Proof. We first note that

A(1)
F (p) = p

(
p1F̂1(p) + p2F̂2(p) + p3F̂3(p)

) = ip d̂iv F(p) = − ̂graddivF(p).
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In a similar way, forp 
= (0,0,p) we have:

A(2)
F (p) = |p|2

p2
1 + p2

2


 p2

2 −p1p2 0

−p1p2 p2
1 0

0 0 0





 F̂1(p)

F̂2(p)

F̂3(p)


 ,

A(3)
F (p) = 1

p2
1 + p2

2


 p2

1p
2
3 p1p2p

2
3 −p1p3(p

2
1 + p2

2)

p1p2p
2
3 p2

2p
2
3 −p2p3(p

2
1 + p2

2)

−p1p3 −p2p3 (p2
1 + p2

2)2





 F̂1(p)

F̂2(p)

F̂3(p)


 .

Summing up these matrices yields the equality

A(2)
F (p) + A(3)

F (p) = −

p2

2 + p2
3 −p1p2 −p1p3

−p1p2 p2
1 + p2

3 −p2p3

−p1p3 −p2p3 p2
1 + p2

2





 F̂1(p)

F̂2(p)

F̂3(p)




= ̂curl curl F(p). (8)

The lemma then follows from the identity (see, e.g., [14]):

� = graddiv− curl curl . �
Theorem 4.2. Let s be any complex number with positive imaginary part, and letF ∈
C∞

0 (Ω;C3). Then, the resolvent of the operatorL at the points2 is given by

(
RL

(
s2)F

)
(x) =

3∑
j=1

(
cj

2π

)3 ∫
R3

Wj (x,p; s)

|p|2 − s2

∫
Ω

〈
F(y),Vj,0(y,p)

〉
dy dp. (9)

If H ∈ C∞
0 (intO;C3), then∫

R3

Wj (x,p; s)

|p|2 − s2

∫
R3

〈
H(y),Vj,0(y,p)

〉
dy dp = 0, for eachj = 1,2,3. (10)

Proof. From the definitions ofA(j)

F andVj,0, the following relation holds:

Vj,0(x,p)

∫
Ω

〈
F(y),Vj,0(y,p)

〉
dy = (2π)3/2eicj

〈
x,p

〉
c2
j |p|2 A(j)

F (cjp).

SinceF ∈ C∞
0 (intO;C3) andVj,0(x,p) is bounded we can integrate overp, in order to

obtain:∫
R3

Vj,0(x,p)

∫
Ω

〈
F(y),Vj,0(y,p)

〉
dy dp = (2π)3/2

c3
j

∫
R3

ei〈x,p〉

|p|2 A(j)

F (p) dp.
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From this and Lemma 4.1, it follows that

3∑
j=1

(
cj

2π

)3 ∫
R3

Vj,0(x,p)

∫
Ω

〈
F(y),Vj,0(y,p)

〉
dy dp

= − 1

(2π)3/2

∫
R3

�̂F(p)
ei〈x,p〉

|p|2 dp = − 1

(2π)3/2

∫
R3

F̂(p)ei〈x,p〉 dp = F(x). (11)

On the other hand, the expression in the right-hand side of (9) makes sense, beca
F ∈ C∞

0 (Ω;C3) and Wj (x, · ; s) ∈ L2
loc(R

3;C3). Also, since F ∈ C∞
0 (Ω;C3) and

Wj (x,p; s) vanishes forx ∈ ∂Ω , that expression lies in the domain ofL; applying then
L−s2 to (9) yields, forx ∈ Ω , the left-hand side of (11) and equality (9) follows.

To prove (10), we first note that the expression (11) remains true if we replaceF by H.
Then, the left-hand side of (10) vanishes if we applyL0 −s2 to it; but this gives the desire
result, sinces2 /∈ R cannot be an eigenvalue of the self-adjoint operatorL acting in the
obstacle. �

We will now introduce an operatorU0 :L2(R3;C3) → ⊕3
L2(R3), that will play in this

work the role played by the Fourier transform in [16]:

(U0F
)
1(p) = c

3/2
1

|p|
〈
F̂(c1p),p

〉
, (U0F)2(p) = 1

|p|
〈
F̂(p),p⊥〉

(U0F)3(p) = 1

|p|
〈
F̂(p), p̃

〉
.

Theorem 4.3. U0 is a unitary operator fromL2(R3;C3) onto
⊕3

L2(R3).

Proof. First we consider an arbitraryf ∈ C∞
0 (R3) and note that

(U0 gradf )1(p) = c
3/2
1

|p|
〈
ĝradf (c1p),p

〉 = ic
5/2
1 f̂ (c1|p|)

|p| 〈p,p〉

= ic
5/2
1 |p|f̂ (c1|p|). (12)

In a similar way, the equalities

(U0 gradf )2(p) = (U0 gradf )3(p) = 0, (13)

follow from the fact thatp⊥ andp̃ are both perpendicular top.
On the other hand, we have for any vector fieldF ∈ C∞

0 (R3;C3):

(U0 curl F)1(p) = 1√
c1|p|

〈
ĉurl F(c1p),p

〉

= i
√

c1

|p| (p1 p2 p3 )


 0 −p3 p2

p3 0 −p1





 F̂1(p)

F̂2(p)

ˆ


 = 0.
−p2 p1 0 F3(p)
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Now, if we takeG = (∂2f,−∂1f,0) = curl(0,0, f ), we obtain forp 
= (0,0,p):

(U0 curl G)2(p)

= 1

|p|2
〈
ĉurl G(p),p⊥〉

= −1

|p|
√

p2
1 + p2

2

(−p2 p1 0)


 0 −p3 p2

p3 0 −p1

−p2 p1 0





 p2f̂ (p)

−p1f̂ (p)

0


 = 0.

Just in the same way we can derive, forp 
= (0,0,p), the relation

(U0 curl G)3(p) =
√

p2
1 + p2

2 |p| f̂ (p).

Proceeding just like above with the vector fieldG, it can be seen that forp 
= (0,0,p):

(U0 G)2(p) = −i

√
p2

1 + p2
2 f̂ (p), (U0 G)3(p) = 0.

Forp = (0,0,p), since for thisp we have that̂G(p) = 0, the equalities(U0 curl G)j (p) =
(U0G)j (p) = 0 hold true.

From all this discussion we can conclude thatU0 has dense range in
⊕3

L2(R3).
Now, due to relations 12 and 13, proving thatU0 maps the vector fieldgradf isometri-

cally into
⊕3

L2(R3) reduces to verify that

c5
1

∫
R3

|p|2 ∣∣f̂ (c1p)
∣∣2 dp =

∫
R3

〈
gradf (x),gradf (x)

〉
dx. (14)

By the divergence theorem and the unitarity of the Fourier transform onL2(R3), we have:∫
R3

〈
gradf (x),gradf (x)

〉
dx = −

∫
R3

f (x)�f (x) dx = −
∫
R3

f̂ (p)�̂f (p) dp

and (14) follows.
Similarly, for G as above:

‖G‖2
L2(R3;C3)

= ‖∂2f ‖2
L2(R3)

+ ‖∂1f ‖2
L2(R3)

= ∥∥∂̂2f
∥∥2

L2(R3)
+ ∥∥∂̂1f

∥∥2
L2(R3)

=
∫
R3

(
p2

1 + p2
2

)∣∣f̂ (p)
∣∣2 dp = ‖U0G‖2⊕3 L2(R3)

.

Finally, for the vector fieldcurl G = curl curl(0,0, f ), we have:

‖ curl G‖2
L2(R3;C3)

= ∥∥∂̂2∂3f
∥∥2

L2(R3)
+∥∥∂̂1∂3f

∥∥2
L2(R3)

+ ∥∥∂̂22f + ∂̂33f
∥∥2

L2(R3)

=
∫
R3

(
p2

1 + p2
2

)|p|2∣∣f̂ (p)
∣∣2 dp = ‖U0 curl G‖2⊕3 L2(R3)

.
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f
nto the
The collection of vector fields{
gradf

∣∣ f ∈ C∞
0

(
R3)} ∪ {

curl F
∣∣ F ∈ C∞

0

(
R3;C3)}

is dense inL2(R3;C3) (e.g., [23]), so that the mapU0 extends isometrically to the who
of L2(R3;C3). As we have already proved that it has dense range, it must be unitary�

In the proposition below, we use the operatorU0 to obtain an expression for the nor
of the resolvent ofL.

Proposition 4.4. For F ∈ C∞
0 (Ω;C3) and Im s > 0, let

B
(j)

F (p; s) =
(

c1

2π

)3/2∫
Ω

〈F(x),Wj (x,p; s)〉
|p|2 − s2 dx.

Then, the norm of the resolvent ofL at the points 2 is given by

∥∥RL
(
s 2)F

∥∥2
L2(Ω;C3)

=
3∑

j=1

∥∥B
(j)

F (· ; s)
∥∥

L2(R3)
.

Proof. For F andG in C∞
0 (Ω;C3),

(
F,RL

(
s2)G

)
L2(Ω;C3)

=
3∑

k=1

∫
Ω

Fk(x)
[
RL

(
s2)G

]
k
(x) dx. (15)

Denote thekth component ofWj with respect to rectangular coordinates byWj,k . Theo-
rem 4.2 implies that thekth component ofRL(s2)G is

[
RL

(
s2)G

]
k
(x) =

3∑
j=1

(
cj

2π

)3 ∫
R3

Wj,k(x,p; s)

|p|2 − s2

∫
Ω

〈
G(y),Vj,0(y,p)

〉
dy dp

=
3∑

j=1

(
cj

2π

)3/2∫
R3

Wj,k(x,p; s)

|p|2 − s2 [U0G′]j (p) dp

whereG′ is the extension ofG to the whole ofR3 made by taking it to be identically 0 i
the obstacle.

SinceG′ ∈ C∞
0 (R3;C3), we have that each[U0G′]k is in S(R3), the Schwarz class o

C∞-smooth functions of rapid decrease; we can then substitute the above equality i
right-hand side of (15) and interchange the order of integration, to obtain:

(
F,RL

(
s2)G

)
L2(Ω;C3)

=
3∑

j,k=1

(
cj

2π

)3/2∫
R3

∫
Ω

Fk(x)
Wj,k(x,p; s)

|p|2 − s2
[U0G′]j (p) dx dp

=
3∑

j=1

(
cj

2π

)3/2 ∫
3

[U0G′]j (p)

∫ 〈
F(x),Wj (x,p; s)

〉
dx dp
R Ω
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le;

see
=
3∑

j=1

∫
R3

B
(j)

F (p; s)[U0G]j dp

= (
BF(· s),U0G

)⊕3 L2(R3)

where, for the sake of briefness, we have written

BF(· ; s) = {
B

(1)
F (· ; s),B

(2)
F (· ; s),B

(3)
F (· ; s)

} ∈
3⊕

L2(R3). (16)

We extendRL(s 2)F to the whole ofR3 by defining it to be identically 0 inside the obstac
we can then write the identity(

RL
(
s2)F,G′)

L2(R3;C3)
= (

BF(· ; s),U0G′)⊕3 L2(R3)
. (17)

For H ∈ C∞
0 (intO;C3), in a similar way as above and by means of (10), we can

that (
BF(· ; s),U0G

)⊕3 L2(R3)
= 0.

So, formula (17) is also valid if we replaceG′ with H.
SinceU0 is unitary, this means that

U0 RL
(
s2)F = BF(· ; s) (18)

and the proposition follows. �

5. The spectral projections

Now we are ready to state and prove our main result.

Theorem 5.1. Let λ > 0. For t � 0, denote byB(t) the ball of radiust and center at the
origin. The spectral projectionsEλ(L) are given by

(
Eλ(L)F

)
(x) =

3∑
j=1

(
cj

2π

)3 ∫
B(

√
λ)

Vj (x;p)

∫
Ω

〈
F(y),Vj (y,p)

〉
dy dp,

whereF is any vector field inC∞
0 (Ω;C3).

Proof. Let F ∈ C∞
0 (Ω;C3), arbitrary. Denote bys(ν; ε) the square root ofν − iε lying in

the upper half-plane ofC.
With this notation, Stone’s formula and Proposition 4.4 imply:

∥∥Eλ(L)F
∥∥2

L2(Ω;C3)
= lim

ε→0+
ε

π

λ∫ ∥∥RL(ν − iε)F
∥∥2

L2(Ω;C3)
dν
0
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17]):
= lim
ε→0+

ε

π

λ∫
0

∥∥BF
(· ; s(ν; ε)

)∥∥2⊕3 L2(R3)
dν, (19)

whereBF is as in (16).
We observe that

∣∣B(j)

F

(
p; s(ν; ε)

)∣∣2 =
(

cj

2π

)3 1

(|p|2 − ν)2 + ε2

∣∣∣∣∣
∫
Ω

〈
F(y),Wj

(
y,p; s(ν; ε)

)〉
dy

∣∣∣∣∣
2

.

(20)

For every fixedy, the vector fieldWj (y,p; s) is jointly continuous with respect top ands;
also (e.g., [22, Chapter 8]):

lim
ε→0

Wj

(
y,p; s

(|p|2; ε
)) = Vj (y,p). (21)

Let

g(j)
ε (p; ν) =

∫
Ω

〈
F(y),Wj

(
y,p; s(ν; ε)

)〉
dy,

g(j)(p) =
∫
Ω

〈
F(y),Vj (y,p)

〉
dy.

SinceF has compact support, relation (21) implies that

lim
ε→0+ g(j)

ε

(
p; |p|2) = g(j)(p). (22)

Then we obtain, for 0< |p|2 < λ, the equality

lim
ε→0+

λ∫
0

ε

π[(|p|2 − ν)2 + ε2]g(j)
ε (p; ν) dν = g(j)(p). (23)

Here, we have used the fact that, in the sense of distributions (e.g., [21, Theorem 1.

lim
ε→0

ε

π

1

(|p|2 − ν)2 + ε2 = δ
(|p|2 − ν

)
. (24)

By (19), (20) and Fubini’s theorem it follows that

∥∥Eλ(L)F
∥∥2

L2(Ω;C3)
= lim

ε→0+
ε

π

λ∫
0

∥∥BF
(· ; s(ν; ε)

)∥∥2⊕3
L2(R3)

dν

=
3∑

j=1

(
cj

2π

)3

lim
ε→0+

ε

π

λ∫
0

∥∥B
(j)

F

(· ; s(ν; ε)
)∥∥2

L2(R3)
dν

=
3∑

j=1

(
cj

2π

)3

lim
ε→0+

∫
3

λ∫
ε g

(j)
ε (p; ν)

π[(|p|2 − ν)2 + ε2] dν dp.
R 0



688 F. Menéndez-Conde / J. Math. Anal. Appl. 299 (2004) 676–689

id
btain:

from
From formula (23) and the fact thatg(j) is in the Schwarz class of functions with rap
decrease at infinity, we can apply the dominated convergence theorem in order to o

∥∥Eλ(L)F
∥∥2

L2(Ω;C3)
=

3∑
j=1

(
cj

2π

)3 ∫
R3

lim
ε→0+

λ∫
0

ε g(j)
ε (p; ν)

π[(|p|2 − ν)2 + ε2] dν dp

=
3∑

j=1

(
cj

2π

)3 ∫
B(

√
λ)

∣∣g(j)(p)
∣∣dp. (25)

Now, we define an operator

U :L2(R3;C3) →
3⊕

L2(R3)
by (UF)j (p) =

(
cj

2π

)3∫
Ω

〈
F(y),Vj (y,p)

〉
dy. (26)

The operatorU thus defined is an isometry fromL2(Ω;C3) into the space
⊕3

L2(R3), as
follows by makingλ → ∞ in (25). With this definition, formula (25) becomes

∥∥Eλ(L)F
∥∥2

L2(Ω;C3)
=

3∑
j=1

∫
B(

√
λ)

∣∣(UF)j (p)
∣∣2 dp.

By polarization we can recover the inner product for arbitraryF,G ∈ C∞
0 (Ω;C3), obtain-

ing:

(EλF,G)L2(Ω;C3) = (EλF,EλG)L2(Ω;C3) =
3∑

j=1

∫
B(

√
λ)

(UF)j (p)(UG)j (p) dp.

Substituting(UG)j by its definition yields

(EλF,G)L2(Ω;C3) =
3∑

j=1

∫
B(

√
λ)

(UF)j (p)

∫
Ω

〈
G(y),Vj (y,p)

〉
dy dp.

SinceG has compact support, we can switch the order of integration, and it follows
the arbitrariness ofG ∈ C∞

0 (Ω;C3) that

(EλF)(y) =
3∑

j=1

∫
B(

√
λ)

Vj (y,p)(UF)j (p) dp.

Writing in the definition ofU , we obtain the result stated.�
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