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Summary 

What types of activities should professional development programs include to revise and extend 
high school teachers’ mathematical and pedagogical knowledge? We propose a route to engage 
high school teachers in an inquiry approach to reflect on their current practice and to construct 
hypothetical learning trajectories that can eventually guide or orient the development of their 
lessons. In this report, we focus on the activities that were worked within a professional 
community that include the participation of mathematicians, mathematics educators and 
doctoral students. 

Introduction 
What mathematical and pedagogical knowledge should the education of high school 
mathematics teachers include? Who should participate in the educational programs to prepare 
mathematics teachers? What should be the role of mathematics departments or the faculty of 
education in preparing prospective and practicing teachers? What types of educational programs 
should practicing teachers participate in order to revise and extend their mathematical knowledge 
and to incorporate research results from mathematics education into their practices? Traditional 
ways to prepare high school teachers normally involve the participation of both mathematics 
departments and the faculty of education. Mathematics departments offer courses in mathematics 
while the faculty of education provides the didactical or pedagogical courses. This model of 
preparing teachers has not rendered solid basis to help teachers provide an instructional 
environment in which they exhibit mathematical sophistication to interpret and prompt students’ 
responses and to organize and implement meaningful learning activities for their students. 
Indeed, it is common to read that university instructors complain that their first year university 
students lack not only fundamental mathematical knowledge; but also strategies or resources to 
solve problems that require more than the use of rules or formulae.  

Many practicing teachers, for different reasons, have not learned some of the content they are now required to 
teach, or they have not learned it in ways that enable them to teach what is now required. …Teachers need 
support if the goal of mathematical proficiency for all is to be reached. The demands this makes on teacher 
educators and the enterprise of teacher education are substantial, and often under-appreciated (Adler, et al., 2005, 
p. 361). 

Davis and Simmt (2006) suggest that teachers’ preparation programs should focus more on 
teachers’ construction of mathematical ideas or relations to appreciate their connections, 
interpretations, and the use of various types of arguments to validate and support those relations, 
rather than the study of formal mathematics courses. Thus, the context to build up their 
mathematical knowledge should be related to the needs associated with their instructional 
practices. “… [mathematical knowledge] needed for teaching is not a watered version of formal 
mathematics, but a serious and demanding area of mathematical work” (Davis and Simmt, 2006, 
p. 295). In this work, we report that teachers’ mathematical knowledge can be revised and 
enhanced within an interacting intellectual community that fosters an inquisitive approach to 
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develop mathematical ideas and to promote problem-solving activities. The core of this 
community should include mathematicians, mathematics educators, and practicing teachers. This 
community promotes collaborative work to construct potential learning trajectories to guide or 
orient the teachers’ instructional practices. Teachers need to be interacting within a community 
that supports and provides them with collegial input and the opportunity to share and discuss 
their ideas in order to enrich their mathematical knowledge and problem solving strategies. In 
this context, we illustrate the importance of using computational tools to represent and explore 
various ways of approaching mathematical tasks.  

Research questions 
Several research works (Santos-Trigo, 2004; Schoenfeld, 1994, 2000; NCTM, 2000) emphasize 
the importance of formulating and validating conjectures when learning and developing 
mathematics. Conjecturing processes involve several dimensions when technology is used 
systematically. For instance, the idea of generalizing is widely amplified and at the same time 
one has the opportunity to ask questions about the way in which a particular computational 
system works. The questions that guided this research are:  What type of mathematical reasoning 
might be developed by high school teachers in order to reconstruct or enhance their mathematical 
knowledge when using technology to explore hypothetical learning trajectories? What type of 
mathematical arguments might high school teachers use to explain unexpected computer 
mathematical results? 

Conceptual Framework 
The conceptual framework is structured around two main theoretical issues: (i) problem solving 
and technology and (ii) hypothetical learning trajectories. We have chosen these constructs since 
learning mathematics is achieved through problem solving, which is enhanced by using 
technological tools. In this regard, we argue that promoting an inquiring approach when learning 
mathematics can be attained effectively by formulating questions and elaborating conjectures 
systematically. This path is strongly related with the finding and exploration of different 
hypothetical learning trajectories. 

Problem solving and the use of technology 
In problem solving activities it has been recognized the relevance of an inquiring or inquisitive 
approach for teachers to work on mathematical tasks or to think of and reflect on their 
instructional activities. In this context, learning mathematics or developing mathematical 
knowledge through problem solving is conceptualized as working with tasks where: 

A task, or goal-directed activity, becomes a problem (or problematic) when the “problem solver” (which may be 
a collaborating group of specialists) needs to develop a more productive way of thinking about the given 
situation (Lesh and Zawojewski , 2007, p. 782). 

It is important to clarify what is understood by a productive way of thinking. According with the 
same authors “…Developing a ‘productive way of thinking’ means that the problem solver needs 
to engage in a process of interpreting the situations, which in mathematics means modeling” (p. 
782). 

 In this context, an important component is to develop an inquiring way of thinking to formulate 
questions, to identify and investigate dilemmas, to search for evidences or information, to discuss 
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solutions, and to present or communicate results. This means willingness to wonder, to pose and 
examine questions, and to develop mathematical understanding within a community that values 
both collaboration and constant reflection. At this point Schoenfeld (1994) argues: 
“Mathematicians develop much of that deep mathematical understanding by virtue of 
apprenticeship in to that community [mathematical community]–typically in graduate school and 
as young professionals” (p. 68). A mode of inquiry involves necessarily the challenges of the 
status quo and a continuous re-conceptualization of what is learned and how knowledge is 
constructed. 

[In a community of inquiry] participants grow into and contribute to continual reconstitution of the community 
through critical reflection; inquiry is developed as one of the forms of practice within the community and 
individual identity develops through reflective inquiry (Jaworski, 2006, p. 202). 

Taking this view into account, and considering that the use of technology has been playing an 
important role in the process of mathematical learning by enhancing different elements of 
mathematical thinking, particularly formulating and validating conjectures, it is relevant to ask: 
what is the role of a computer system in the process of posing and justifying conjectures? How 
trustable are the results obtained with the aid of a computer system?  

Concerning the first question Santos (2007) argues: “A relevant aspect when representing a task 
with the aid of a dynamical software is that students have the opportunity to pose questions about 
the structure of some elements of the configuration” (p. 124). 

Regarding the second question, Dick (2007) has introduced the term Mathematical Fidelity “to 
emphasize that the mathematics of the tool does not always represent the mathematics as it is 
understood by the mathematics community” (p.1174). In the example that we will discuss, it will 
be pointed out the strong necessity of providing mathematical arguments to deal with 
discrepancies between the computers results and the expected ones. 

Hypothetical Learning Trajectories 
To promote the teachers’ inquiring approach to their practice we rely on the construction of 
Hypothetical Learning Trajectories (HLT). These trajectories emerge from examining potential 
routes of solution of mathematical tasks. Simon and Tzur (2004) state that the construction of 
hypothetical learning trajectories is based on the following assumptions: 

1. Generation of an HLT is based on understanding of the current knowledge of the students involved. 

2. An HLT is a vehicle for planning learning of particular mathematical concepts. 

3. Mathematical tasks provide tools for promoting learning of particular mathematical concepts and are, 
therefore, a key part of the instructional process. 

4. Because of the hypothetical and inherently uncertain nature of this process, the teacher is regularly involved in 
modifying every aspect of the HLT (p. 93). 

In this perspective, we suggest that teachers together with other community members (including 
mathematicians), work on various ways to approach the tasks and to identify relevant concepts 
and problem solving strategies needed to solve them. We argue that this type of teachers’ 
interaction becomes relevant to foster and to develop a problem solving approach that involves: 

Seeing the mathematical content in mathematically unsophisticated questions, seeing underlying similarity of 
structure in apparently different problems, facility in drawing on different mathematical representations of a 
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problem, communicating mathematics meaningfully to diverse audiences, facility in selecting and using 
appropriate modes of analysis (“mental”, paper and pencil, or technological), and willingness to keep learning 
new material and techniques (Cohen, 2001, p. 896). 

In addition, we also recognize that the use of computational tools offers to teachers the 
opportunity to enhance relevant aspects of mathematical thinking as well as to represent and 
examine mathematical tasks in terms of questions that can lead them to develop or reconstruct 
some mathematical results. For instance, the use of a dynamic software allows teachers to 
represent problems dynamically in order to recognize and explore mathematical relations within 
a geometrical configuration, and to identify loci described by members of the configuration when 
others are moved. In this context, the use of computational tools becomes important for teachers 
to discuss pedagogical paths associated with the hypothetical learning trajectories that can be 
useful to guide or orient their instructional practices. 

We claim that the inquiring process is strongly intertwined with the appearance of hypothetical 
learning trajectories derived from a problem solving activity. By this we mean that in the process 
of formulating questions, there arises the opportunity to learn or reconstruct new mathematical 
concepts that emerge while pursuing those questions. 

Research Design, Methods and General Procedures 
The Center for Research and Applied Mathematics, that is part of a public university, is in charge 
of developing and implementing a professional program to revise and improve high school 
teachers’ mathematical and didactical knowledge. As a part of the program, we coordinated a 40 
hrs instructional module, out of four, whose main aim was to illustrate and discuss the strengths 
and limitations of using computational tools in problem solving activities. To this end, a group 
that includes two mathematicians, one mathematics educator, and two doctoral students met 
together during two months, in sessions of three hours a week, to select and discuss the tasks that 
later would be used during the development or implementation of the activities with the teachers. 
During each session, one member of the group presented one problem and provided information 
related to its relevance or rationale and ideas about possible solutions. Then, all participants 
became engaged in the solution process and at the end they discussed and summarized the main 
ideas and ways used to approach the task. In this report, we focus on presenting general features 
of hypothetical learning trajectories that emerged as a result of working on those tasks that later 
we used to structure the development of the sessions with the actual group of teachers who 
participated in this module. Our unit of analysis is the work done and reported by the participants 
(the mathematicians, the math educator and the doctoral students) as a group. Thus, in presenting 
the results we use the word group to identify and characterize that work. The selected problems 
came from textbooks and research articles. There were also those that include the construction of 
an initial dynamic configuration (using dynamic software) in which teachers could formulate 
their own questions or problems. 

The task: This problem involves an extension of a task discussed in Santos, et al. (2006, p. 125). 
In particular, the working group constructed a hypothetical route for teachers to develop an 
inquiring approach to the tasks in which the use of technology is encouraged. The problem arises 
from analyzing invariance and structure of simple components of a geometric configuration in 
order to identify an instructional path to foster the teachers’ construction of mathematical 
relations. 
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Given a straight line L, a point P in L and a 
point Q not in L, draw the segment PQ, a 
line 

1
L  perpendicular to PQ through Q and a 

line
2
L  perpendicular to L through P. Call R 

the intersection of 
1
L  and 

2
L . What is the 

locus of R when P runs on L? L

L2
L1

P

Q

R

 
Figure 1: What is the locus of point R when 

point P is moved along line L? 

Research Results and Discussion 
Figure 2 shows the different stages that appeared during the solution process of the task as well 
as main features that guide the construction of the different hypothetical learning trajectories. It 
should be mention that the diagram shows only one instructional route that the group proposed 
during the discussion of the task, however there were two more possible routes (finding the 
triangle with minimum area and the case where the locus is a hyperbola), whose discussion is not 
presented. 
 
In this perspective, the meaning associated with the main stages that characterize the potential 
instructional trajectory involves: (i) the recognition of the high school teachers’ knowledge base 
to represent and explore the initial task, (ii) the recognition that the aim of the developed task is 
to provide conditions in order that high school teachers reinforce and reconstruct their 
mathematical concepts in such way that this would help them to design and guide learning 
activities in the classroom, (iii) the discussed problem arises from analyzing minimal elements in 
a geometric configuration with the objective of designing learning tasks and (iv) the possibility 
that the teachers will bring into the discussion additional elements to modify every aspect of the 
hypothetical learning trajectory after they have solved the task. 

One of the members of the discussion group suggested to approach the problem using Cabri-
Geometry to construct the geometric configuration, after this, using the tool Locus, it was asked 
the software to describe the locus drawn by point R when P moves on L.  Cabri-Geometry shows 
a graph that looks like a parabola, Figure 1. With this information, some of the members of the 
group went further in conjecturing, using Cabri-Geometry's tool Equation or coordinate: the 
equation of the locus described by R corresponds to a parabola.  At this point there was 
consensus that formal arguments were needed in order to continuous with the analysis to find 
connections and generalizations.  

Using a coordinate system. An algebraic approach becomes important to construct an argument 
to show that the locus is a parabola. Here, the group used a Cartesian System in a proper position 
to facilitate algebraic operations. 

Without loss of generality, one can assume that L coincides with the x axes, )0,(tP =  and 
),( baQ = . In order to determine the coordinates of R, one finds the equations of 

1
L , which turns 
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out to be 

! 

y " b = t " a( ) b( ) x " a( ) , the equation of 
2
L is tx = . Solving the system determined by 

these two equations yields 

! 

y " b = x " a( )
2

b… (*), which is in fact the equation of a parabola 
since a and b are fixed. 

 

Figure 2: Hypothetical learning process in the context of a particular task. 
 

At this stage, the dynamic representation of the task becomes a departure point to identify and 
explore diverse mathematical relations. Here, we document ways in which the working group 
explored the following general cases: 

(a) Same assumptions on L, P and Q but now, it was taken an additional point Q' on the segment 
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PQ and the line 
1
L  that passes through the point Q'. What is the locus described by R when P 

moves along L? How does the locus change when Q' moves along the segment PQ? 

An interesting part of the use of Cabri Geometry to formulate conjectures is that after proving the 
result the discussion group obtain more accurate information about the parabola. For example, 
knowing the focus and the directrix, the group could formulate the result in terms of synthetic 
geometry. 

Let L be a line, Q a point not in L, P ∈ L, L1 the line that passes through Q and P. Take a point 
Q’ ∈ L1 and draw the perpendicular line to L1 that passes through Q’, calling it L2. Through P, 
Q’ and Q draw perpendicular lines to L, calling these lines L3, L4 and L5, respectively. Let T, S 
and R be the points of intersection of the lines L and L4; L and L5; L2 y L3, respectively. Through 
Q’ draw a perpendicular line to L4 that intersects L3 and L5 at E and V respectively. Let F and W 
be points on L5 such that 

! 

WV =VF =QS
2
4Q' T . Let L6 be the perpendicular to L5 that passes 

through W and intersects L3 at U. Then L6 and F are the directrix and focus of a parabola with 
vertex at V. 

Proof. The claim is equivalent to show that UR=FR. We have: 

! 

FR
2

=VE
2

+ (UR " 2VF)
2  …(1) 

From the similar triangles PQ'T and PQS  one 
has: 

! 

QS

Q'T
=
VE

Q'E
, 

and from this, one obtains: 

! 

VE =
SQ

TQ'
Q'E .  

Figure 3: We have to prove that UR = FR. 

Substituting the value of VF and VE in equation (1) and developing the binomial one arrives to: 

! 

FR
2

=
SQ

2
Q'E

2

Q'T
2

+UR
2 "UR

QS
2

Q'T
+

QS
4

4Q'T
2

=UR
2

+
SQ

2

Q'T

Q'E
2

Q'T
"UR + FV

# 

$ 
% 

& 

' 
( .

 

From the triangle RQ'P we have ))((' 2
ERPEEQ = ; on the other hand PE=Q'T, hence from the 

previous equation one concludes that: 

! 

FR
2 =UR2 +

SQ
2

Q'T
ER "UR " FV( ). 

We also have ER-UR=-EU=-VW=-VF; from which the conclusion follows. 

In the last result, the group assumed that the second coordinate of the point Q’ does not change; 
with this in mind some of the members of the group ask a very natural question. What would 

L 
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happen if this condition is replaced by: the distance from Q to Q’ remains constant? 

(b) Assuming that L, P and Q are as above, but now the point Q' is the intersection of the line L', 
passing through P and Q, and the circle C of radius r with center at Q. The lines 

1
L  and 

2
L  are 

constructed as before, and so is R. What is the locus described by R when P moves along L? 
How does the locus behave when r approaches zero? 

1

x

1

y

L2
L1

L

P

Q

Q'

R

 
Figure 4: What is the locus of point R when 

point P moves along line L? 

1

x

1

y

L

L'

L1

L2

P

Q

Q'

R

 
Figure 5: What is the locus of point R when 

point P moves along line L? 

In discussing part (b), with the use of Cabri Geometry the group has the chance to experiment 
and observe the behavior of the locus generated by R. One first approach shows results as shown 
in Figure 5, and it seems that the locus is a parabola, the Equation tool from Cabri Geometry 
even suggests that we are dealing with a parabola.  

Nevertheless, taking a closer look at the 
geometrical behavior of the locus generated 
by R, there appears a graph as the one shown 
in Figure 6, which cannot be identified with 
the graph of a parabola. With this evidence, it 
is natural to ask for formal arguments to find 
out which kind of geometric object is 
described by point R. After performing 
calculations using a Coordinate System the 
group found that: 

! 

R = x,
1

b
x " a( )

2
+ b2 ± r x " a( )

2
+ b2

# 
$ 
% 

& 
' 
( 

# 

$ 
% 

& 

' 
( , 

1
x

1

y

L2
L

L'

L1

P

Q

Q'

R

 

Figure 6: What locus is described by point R? 

where the center of the circle is (a,b) . It should be noticed that the second coordinate of R 
approaches 

! 

x " a( )
2

b[ ] + b  when r approaches zero, which is the same result as (*), page 6. This 

result is consistent with the process of generalizing, an important aspect of the mathematical 
thinking. 

Also the participants asked questions related with the way that Cabri performs geometric 
transformations. This led to think about the reliability of mathematical results obtained with the 
aid of a computer system. Here the group had the opportunity to point out the necessity of 
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analyzing the process and results obtain from the technological tool and ask questions related to 
the axiomatic system of it. 

Closing remarks 
Mathematical tasks are key elements of any professional development program that aims to 
revise and enhance teachers’ mathematical and didactical knowledge. How should those tasks be 
discussed with teachers in order to identify explicitly ways of reasoning that are consistent with 
mathematical practice? We argue that tasks or problems should be addressed openly within an 
inquisitive community that promotes collaboration and mathematical reflection. In this process, 
the use of computational tools becomes relevant to represent some tasks dynamically and 
visualize diverse mathematical relations embedded in those tasks. It is evident that the 
conceptualization of the task as dilemmas, provide the opportunity to identify and explore 
relations, to open diverse lines of thinking or reflection that can lead the community or the 
problem solver to approach the task from diverse angles or perspectives. For example, the visual 
and empirical approach becomes important to identify relevant information, possible relations, 
and plausibility of solutions. The use of dynamic software offers the opportunity of utilizing 
particular heuristic strategies (searching for partial solutions) to solve the problem. Thinking of 
various approaches to the problem, another relevant problem solving activity, allows the problem 
solver to identify fundamental properties of the solution and possible relations or connections. 
Thus, problem solving is a continuous activity in which contents (from various domains), 
resources and strategies are used to initially construct a hypothetical learning trajectory that can 
be useful to orient and structure the practice of mathematical teachers. Finally, the group that 
worked on the task recognizes the relevance of approaching them within an inquisitive or 
inquiring community. The participants have developed a guide to implement the tasks. Of 
course, the plan and activities to implement the tasks in the professional development program 
were based on considering the trajectories that emerged during the group sessions. 

An aspect, which is of crucial importance when using technological tools for solving 
mathematical problems, is related to providing support or formal arguments to results produced 
through the use of the tools. It is well accepted that technology is a powerful tool, however the 
results obtained should be examined rigorously in order to be accepted or rejected. In this respect 
Dick (2007, p. 1175) has introduced the term mathematical fidelity and has identify three areas 
in which a lack of mathematical fidelity can emerge: (i) mathematical syntax, (ii) 
underspecifications in mathematical structures and (iii) limitations in representing continuous 
phenomena with discrete structures and finite precision numerical computation. However these 
areas might not consider aspects related with reliability such as the results in the discussed 
example. We think that results that disagree with the expected ones has to do with the internal 
processing of the tool; related with this we suggest that a closer examination of the mathematical 
structure of the tool has to be done. At this respect our opinion agrees with Zbiek et al. (2007) 
whose statement is: 

As technology becomes an increasingly integrated part of school mathematics, careful analysis of issues of 
mathematical fidelity [and reliability] will be needed. This type of research will necessitate intense collaboration 
involving mathematicians, computer scientist, and mathematics education researchers (p. 1176). 

We also consider that this analysis should include categorizing levels of reliability of the tool. 
For instance we claim that the basic arithmetic operations (addition and multiplication within the 
precision range of calculators and computers) are 100% reliable. This is not the case for more 
sophisticated mathematical operations. 
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