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Abstract: 1.M. Isaacs has proven a very interesting theorem concerning solv-
ability of polynomials by real radicals. His result deals with an irreducible
polynomial over the field of rational numbers which has a real radical element
and splits in R. In this note we present a short proof of a generalization of
Isaacs Theorem.
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1. Introduction

In [5], Isaacs has proven a very interesting theorem concerning solvability of
polynomials by real radicals. His result deals with an irreducible polynomial
over the field of rational numbers which has a real radical element and splits in
R. In this note we present a short proof of a generalization of Isaacs Theorem.
Our proof is based on two results: one is Capelli Theorem on irreducible bino-
mials and the other one is a criterion for a radical extension to have a unique
subfield for each divisor of its degree.

2. A Theorem of Isaacs

Definition 1. (a) An extension K/F' is said to be radical if there exists
a € K so that K = F(«) and " € F for some integer n > 1.
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(b) An extension K/F' is said to be a repeated radical extension, if there
exists a sequence of fields F = Fy C F} C F, C --- C F, = K so that Fj11/F;
is radical for all = 0,...,r — 1.

We say that the field extension K/F has the unique subfield property, ab-
breviated u.s.p., if for every m dividing the degree [K : F, there exists a unique
subfield of K/F whose degree over F' is m.

In what follows, u(F) will denote the group of roots of one in the field F
and (,, will denote a primitive n-th root of one.

Theorem 2. (see [3], Theorem 1.2) Let F be a field, n a positive integer
and a € F. The binomial " — a is irreducible iff:

(a) For every prime p dividing n, a ¢ FP = {bP : b € F}.

(b) If 4 divides n and char F # 2, —4a & F*.

Theorem 3. (see [1], Theorem 2.1) Let 2™ — a be irreducible over F,
where the characteristic of F' does not divide n, and let « be a root of =" — a.
Then the extension F(«)/F has the u.s.p. iff:

(i) for every odd prime p dividing n, {, ¢ F(«) \ F, and

(ii) if 4|n, then (4 & F(a) \ F.

If K/F is a separable algebraic extension of fields and aF™ is a torsion
element in the group K*/F*, then a defines two numbers: o(aF*) = m and
[F(a) : F] = n. A result of Risman [2, Theorem A] establishes the general
relationship between m and n, however, under additional assumptions on roots
of unity we have that n = m as the following result shows.

Theorem 4. With the assumptions and notation as above, if (3, & F(cv)\
F for every prime p dividing o(aF™), then [F(«) : F] = o(aF™).

Proof. Since o(aF™*) = m, then 2™ — o™ € Flz|. If 2™ — o™ is reducible,
separability of F'(a)/F and Theorem 1 imply o € FP for some prime p dividing
m, or if 4 divides m, then —4a™ € F*. If ™ = bP for some b € F, then
amP = C;fb for some 0 < k < p. Since (3p € F(a) \ F then o™ e F oa
contradiction. If 4a™ + b* = 0 for some b € F, then 2a™/2 = +(,;b%. The
assumption (g & F(«) \ F' implies a™? ¢ F, a contradiction. O

Theorem 5. Let F be a field, f(x) € F[z| a separable and irreducible
polynomial, « a root of f(z) and E the splitting field of f(xz) over F. Assume
that the following hold:

(i) the element « is contained in a repeated radical extension K/F,
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(ii) the fields EK and F have the same roots of one, that is, u(EK) = u(F).

Then ¢, € F for each prime p dividing [E : F] and every subfield M with
F CM CE and [E : M] = p is radical.

In the proof of Theorem 5 we need the following:

Lemma 6. Let F C E be a separable radical extension, say E = F(«)
with o € F and n minimum. Assume that u(E) = p(F). If F C L C E with
L/F normal, then (, € F for every prime p dividing [L : F].

Proof. Since n is minimum and p(E) = u(F), from Theorem 4 one has
n = [F(a) : F], in particular 2" — o™ = 2" — a € Flz] is irreducible. From
Theorem 2 we have that F(«)/F has the u.s.p., hence L = F(%/a) with m
dividing n and [L : F] = m, since L/F is normal we must have ¢,, € L C F(«),
hence (,, € F. O

Proof of Theorem 5. We shall use part of Isaacs proof. Let G = Gal (E/F)
be the Galois group of E/F, then |G| = [E : F]. If p is a prime dividing |G/, let
N be the subgroup of G generated by the elements of G of order p. It is clear
that N is normal in G. By Cauchy Theorem, 1 < N, hence L = EV # E and by
the Fundamental Theorem of Galois theory, L/F is normal hence a ¢ L, since
otherwise normality of L/F would imply L = E. Let H = Gal(E/F(«)). The
condition F'(«) € L is equivalent to N Z H, hence we may choose 0 € N\ H of
order p. Define M := E“, hence F(a) Z M. The assumption on « guarantees
the existence of a repeated radical extension F' = Fy C Fy--- C F, = K so that
a € F, with F; = F;_1(oy) and o] € F;_y. Foreach i =1,...,r set M; = M F;
then F; C M; C EF,, hence o € M, = EF,, thus there exists s > 1 so that
a € Mg\ Mg_1. We also have that M C M;_ 1 NE C M;NE C E. From the
definition of M, [E : M] = p. Since o ¢ Ms_1 N E and a € M, N E then we
must have M = M, 1 N E and £ = E N M;,.

From Galois theory we have EM,_;/M,_1 is Galois of degree p. We also
have, from the definition of M;, that My/Ms_1 is a radical extension. The
assumption u(EF,) = p(F) implies pu(Ms) = u(Mg_1), hence the assumptions
of the previous lemma are satisfied, so ¢, € M;_; C EF,. Applying again the
assumption on n-th roots we have ¢, € F'.

The last conclusion follows from Kummer theory, since E/M is cyclic of
degree p and ¢, € F. O

Remark 7. Assumption ii) in Theorem 5 can be replaced by the weaker
condition: for every prime p, (3, ¢ EK \ F. This situation occurs in co-Galois
theory, see [4] for the basic results on co-Galois extensions.
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