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Abstract: I.M. Isaacs has proven a very interesting theorem concerning solv-
ability of polynomials by real radicals. His result deals with an irreducible
polynomial over the field of rational numbers which has a real radical element
and splits in R. In this note we present a short proof of a generalization of
Isaacs Theorem.
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1. Introduction

In [5], Isaacs has proven a very interesting theorem concerning solvability of
polynomials by real radicals. His result deals with an irreducible polynomial
over the field of rational numbers which has a real radical element and splits in
R. In this note we present a short proof of a generalization of Isaacs Theorem.
Our proof is based on two results: one is Capelli Theorem on irreducible bino-
mials and the other one is a criterion for a radical extension to have a unique
subfield for each divisor of its degree.

2. A Theorem of Isaacs

Definition 1. (a) An extension K/F is said to be radical if there exists
α ∈ K so that K = F (α) and αn ∈ F for some integer n ≥ 1.
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(b) An extension K/F is said to be a repeated radical extension, if there
exists a sequence of fields F = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fr = K so that Fi+1/Fi

is radical for all i = 0, . . . , r − 1.

We say that the field extension K/F has the unique subfield property, ab-
breviated u.s.p., if for every m dividing the degree [K : F ], there exists a unique
subfield of K/F whose degree over F is m.

In what follows, µ(F ) will denote the group of roots of one in the field F
and ζn will denote a primitive n-th root of one.

Theorem 2. (see [3], Theorem 1.2) Let F be a field, n a positive integer
and a ∈ F . The binomial xn − a is irreducible iff:

(a) For every prime p dividing n, a 6∈ F p = {bp : b ∈ F}.
(b) If 4 divides n and char F 6= 2, −4a 6∈ F 4.

Theorem 3. (see [1], Theorem 2.1) Let xn − a be irreducible over F ,
where the characteristic of F does not divide n, and let α be a root of xn − a.
Then the extension F (α)/F has the u.s.p. iff:

(i) for every odd prime p dividing n, ζp 6∈ F (α) \ F , and

(ii) if 4|n, then ζ4 6∈ F (α) \ F .

If K/F is a separable algebraic extension of fields and αF ∗ is a torsion
element in the group K∗/F ∗, then α defines two numbers: o(αF ∗) = m and
[F (α) : F ] = n. A result of Risman [2, Theorem A] establishes the general
relationship between m and n, however, under additional assumptions on roots
of unity we have that n = m as the following result shows.

Theorem 4. With the assumptions and notation as above, if ζ2p 6∈ F (α)\
F for every prime p dividing o(αF ∗), then [F (α) : F ] = o(αF ∗).

Proof. Since o(αF ∗) = m, then xm − αm ∈ F [x]. If xm − αm is reducible,
separability of F (α)/F and Theorem 1 imply αm ∈ F p for some prime p dividing
m, or if 4 divides m, then −4αm ∈ F 4. If αm = bp for some b ∈ F , then
αm/p = ζk

p b for some 0 ≤ k < p. Since ζ2p 6∈ F (α) \ F then αm/p ∈ F , a

contradiction. If 4αm + b4 = 0 for some b ∈ F , then 2αm/2 = ±ζ4b
2. The

assumption ζ2p 6∈ F (α) \ F implies αm/2 ∈ F , a contradiction.

Theorem 5. Let F be a field, f(x) ∈ F [x] a separable and irreducible
polynomial, α a root of f(x) and E the splitting field of f(x) over F . Assume
that the following hold:

(i) the element α is contained in a repeated radical extension K/F ,
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(ii) the fields EK and F have the same roots of one, that is, µ(EK) = µ(F ).

Then ζp ∈ F for each prime p dividing [E : F ] and every subfield M with
F ⊂ M ⊂ E and [E : M ] = p is radical.

In the proof of Theorem 5 we need the following:

Lemma 6. Let F ⊆ E be a separable radical extension, say E = F (α)
with αn ∈ F and n minimum. Assume that µ(E) = µ(F ). If F ⊆ L ⊆ E with
L/F normal, then ζp ∈ F for every prime p dividing [L : F ].

Proof. Since n is minimum and µ(E) = µ(F ), from Theorem 4 one has
n = [F (α) : F ], in particular xn − αn = xn − a ∈ F [x] is irreducible. From
Theorem 2 we have that F (α)/F has the u.s.p., hence L = F ( m

√
a) with m

dividing n and [L : F ] = m, since L/F is normal we must have ζm ∈ L ⊆ F (α),
hence ζm ∈ F .

Proof of Theorem 5. We shall use part of Isaacs proof. Let G = Gal (E/F )
be the Galois group of E/F , then |G| = [E : F ]. If p is a prime dividing |G|, let
N be the subgroup of G generated by the elements of G of order p. It is clear
that N is normal in G. By Cauchy Theorem, 1 < N , hence L = EN 6= E and by
the Fundamental Theorem of Galois theory, L/F is normal hence α 6∈ L, since
otherwise normality of L/F would imply L = E. Let H = Gal(E/F (α)). The
condition F (α) 6⊆ L is equivalent to N 6⊆ H, hence we may choose σ ∈ N \H of
order p. Define M := Eσ, hence F (α) 6⊆ M . The assumption on α guarantees
the existence of a repeated radical extension F = F0 ⊆ F1 · · · ⊆ Fr = K so that
α ∈ Fr with Fi = Fi−1(αi) and αni

i ∈ Fi−1. For each i = 1, . . . , r set Mi = MFi

then Fi ⊆ Mi ⊆ EFr, hence α ∈ Mr = EFr, thus there exists s ≥ 1 so that
α ∈ Ms \ Ms−1. We also have that M ⊆ Ms−1 ∩ E ⊆ Ms ∩ E ⊆ E. From the
definition of M , [E : M ] = p. Since α 6∈ Ms−1 ∩ E and α ∈ Ms ∩ E then we
must have M = Ms−1 ∩ E and E = E ∩ Ms.

From Galois theory we have EMs−1/Ms−1 is Galois of degree p. We also
have, from the definition of Ms, that Ms/Ms−1 is a radical extension. The
assumption µ(EFr) = µ(F ) implies µ(Ms) = µ(Ms−1), hence the assumptions
of the previous lemma are satisfied, so ζp ∈ Ms−1 ⊆ EFr. Applying again the
assumption on n-th roots we have ζp ∈ F .

The last conclusion follows from Kummer theory, since E/M is cyclic of
degree p and ζp ∈ F .

Remark 7. Assumption ii) in Theorem 5 can be replaced by the weaker
condition: for every prime p, ζ2p 6∈ EK \ F . This situation occurs in co-Galois
theory, see [4] for the basic results on co-Galois extensions.
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