DISCIPLINARY BACKGROUND


Why study the Master of Science in Automation and Control?


The Master of Science in Automation and Control studies systems, processes, or plants in their various applications (industrial, technological, biotechnological and robotics, among others), as well as their dynamic analysis and controller design with a practical theoretical approach.

As a discipline, automation and control is an area of engineering that is linked to other disciplines. Therefore, the importance of studying, from an analytical point of view, the behavior of systems for the eventual design of control strategies is emphasized.

The synergy of automation and control results in a direct interaction of science and technology, in response to the demands of society to generate better processes for the transformation of raw materials. In response to the national demand for professionals capable of applying control strategies or automating processes, the PEP addresses the study of nonlinear and robotic systems control, as well as automation with a tendency to instrument industrial, biotechnological, electrical and electronic process variables. In addition, the PEP-MCAC has been recognized since its creation by CONACyT as a national quality postgraduate program at a consolidated level.



To train Masters of Science in Automation and Control, with a solid academic, scientific, technological and research preparation, with ethical principles and critical attitude, that contribute to technological and scientific progress, through knowledge and competences of the area, for regional and national development.
In the year 2023, the Master of Science in Automation and Control is a program of excellence with wide national and international recognition, for its academic quality supported by researchers belonging to recognized research groups and lines of application and generation of cutting-edge knowledge, which allow having graduates with ethical principles and a solid scientific background, capable of designing and applying automatic control schemes in different sectors, which contribute to the development of the state and the country.
General Objective.

To train masters in Automation and Control with deep and solid knowledge of their disciplinary field, through an academic preparation that allows them to have the necessary bases to initiate in the field of research and prepare to continue with doctoral studies; to collaborate in research projects in order to generate research skills; to demonstrate an efficient disciplinary performance from a reflexive critical vision.

Specific Objectives.

  1. To train human resources with scientific and technical knowledge of automation and control through diverse academic activities, to develop or collaborate in multidisciplinary research projects in the incorporation of automatic control algorithms.

  2. To develop professional and research competencies based on the acquisition of information search and analysis skills, the application of novel techniques and methods, and the knowledge and use of state-of-the-art equipment for the solution of current problems in the field of automation and automatic control.

  3. To foster in the student the attitudes and abilities to work in interdisciplinary and multidisciplinary teams, increasing the efficiency, quality and relevance of the work developed.

  4. To develop in the student oral and written communication skills for the dissemination of results obtained in a research project.

  5. To foster a critical spirit and creativity that will have a positive impact on their training and professional development, as well as social values such as honesty, respect, solidarity and tolerance that will allow them to contribute to the creation of a better society.
The Master of Science in Automation and Control consists of two Lines of Knowledge Generation and Application (LGAC):

1.- Nonlinear Systems: This LGCA has as main objective, to abstract the fundamental concepts of linear, nonlinear, robust, optimal, systems with delays, adaptive and intelligent control theory for application in industrial cutting processes, power plants and biotechnological processes, among others. This through scientific and applied research so that the system under study complies with design characteristics in its response to the output.

This LGAC is in charge of synthesizing, analyzing and implementing nonlinear control systems through the cultivation of the following strategies:

  • Lyapunov's approach
  • Optimal Control Theory
  • Fuzzy systems
  • Systems with neural networks
  • Variable structure
  • Robust Control
  • Adaptive Control
  • Delayed systems
  • Non-linear observers
  • Linear systems
  • Process control
  • Among others.

2.- Robot Control:This LGAC aims to develop, instrument and control fixed (manipulator robots) and mobile robotic platforms; within which the following can be mentioned:

  • Manipulator robots
  • Mobile robots
  • Digital image processing
  • Visual servoing
  • Control of underactuated systems
  • Autonomous robots
  • Tele-operation
  • Advanced robot control
  • Haptic interfaces
  • Exoskeletons
  • Anthropomorphic robots
  • Bio-robots
  • Unmanned vehicles (aerial, land, marine and underwater)

Another objective is to contribute with technological advances in terms of automation in order to improve the perception of the environment surrounding this type of systems. These strategies will be applied numerically and experimentally in the subjects and thesis topics developed within the PEP-MCAC such as mechatronic systems, vision systems, control of manipulator and mobile robots, stability analysis, biological systems, among others.




Duration

2 YEARS


Do you have more questions? Contact us at

We would like to give you more information, please leave your details






Basic Academic Core

We have 12 research professors with doctoral degrees.



Journals indexed in the Journal Citation Report 2020

  1. Santos, O., Ramírez, M., Cuvas, C., Rodríguez-Guerrero, L., Romero, H., & Ordaz, P. (2020). On the Ultimate Uniform Bounded-stabilization for a Class of Perturbed Time Delay System via Sub-optimal Robust Control. International Journal of Control, Automation and Systems, 1-12.
  2. Garcia-Rodriguez, R., Parra-Vega, V., Ramos-Velasco L.E. and Dominguez-Ramirez, O.A. Neuro-controller for Antagonistic bi-Articular Muscle Actuation in Robotic Arms based on Terminal Attractors, Transactions of the Institute of Measurement and Control, 42(11):2031-2043.
  3. Cervantes, J., Yu, W., Salazar, S., & Chairez, I. (2020). Time-varying output-based Takagi-Sugeno fuzzy controller of uncertain nonlinear systems. International Journal of Systems Science, 1-16.
  4. Cervantes-Rojas, J. S., Muñoz, F., Chairez, I., González-Hernández, I., & Salazar, S. (2020). Adaptive tracking control of an unmanned aerial system based on a dynamic neural-fuzzy disturbance estimator. ISA transactions.
  5. Santos, O., García, O., Romero, H., Salazar, S., Lozano, R. (2020). Finite horizon nonlinear optimal control for a quadrotor: experimental results. Accepted in Optimal Control, Applications and Methods.
  6. Ochoa-Ortega, G., Villafuerte-Segura, R ., Luviano-Juárez, A., Ramírez-Neria, M., & Lozada-Castillo, N. (2020). Cascade Delayed Controller Design for a Class of Underactuated Systems. Complexity, 2020.
  7. Aguirre-Hernández, B., Villafuerte-Segura, R., Luviano-Juárez, A., & Cortés-Romero, J. (2020). Theoretical and Applied Contributions to Robust Stability Analysis of Complex Systems. Complexity, 2020.
  8. Itzá-Ortiz, B. A., Villafuerte-Segura, R., & Alvarado-Santos, E. (2020). Delay-dependent and delay-independent stability of Cournot duopoly model with tax evasion and time-delay. Communications in Nonlinear Science and Numerical Simulation, 87.
  9. Villafuerte-Segura, R., Alvarado-Santos, E., & Itzá-Ortiz, B. A. (2020). Conditions for stable equilibrium in Cournot duopoly models with tax evasion and time delay. Chaos, 30(1).
  10. Hernández-Melchor, D. J., Camacho-Pérez, B., Ríos-Leal, E., Alarcón-Bonilla, J., & López-Pérez, P. A . (2020). Modelling and multi-objective optimization for simulation of hydrogen production using a photosynthetic consortium. International Journal of Chemical Reactor Engineering, 18(7).
  11. Itzá-Ortiz, B. A., & Martínez-Avendaño, R. A. (2020). The numerical range of a class of periodic tridiagonal operators. Linear and Multilinear Algebra, 1-21.

2019

  1. Santos-Sánchez, O. J., Mondié, S., Rodríguez-Guerrero, L., & Carmona-Rosas, J. C. (2019). Delays compensation for an atmospheric sliced tomato dehydration process via state predictors. Journal of the Franklin Institute, 356(18), 11473-11491.
  2. Rodríguez-Guerrero, L., Cuvas-Castillo, C., Santos-Sánchez, O. J., Ordaz-Oliver, J. P., & García-Samperio, C. A. (2019). Finite horizon nonlinear energy optimizing control perturbed systems with multiple distributed time delays. Journal of Process Control, 80, 127-142.
  3. Herrera-Alcántara, O., Barrera-Animas, A. Y., González-Mendoza, M., & Castro-Espinoza, F. (2019). Monitoring Student Activities with Smartwatches: On the Academic Performance Enhancement. Sensors, 19(7), 1605.
  4. López-Ortega, O., & Castro-Espinoza, F . (2019). Fuzzy similarity metrics and their application to consensus reaching in group decision making. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-10.
  5. Cervantes-Escorcia, N., Santos-Sánchez, O. J., Rodríguez-Guerrero, L., Romero-Trejo, H., & González-Facundo, A. (2019). Optimal PI and PID Temperature Controls for a Dehydration Process. Arabian Journal for Science and Engineering, 44(3), 2519-2534.
  6. Aguirre-Hernández, B., Campos-Cantón, E., Villafuerte-Segura, R., Vázquez-Aguilera, C., & Loredo-Villalobos, C. A. (2019). Open Challenges on the Stability of Complex Systems: Insights of Nonlinear Phenomena with or without Delay. Complexity, 2019.
  7. Romero-Cortes, T., Pérez España, V. H., López Pérez, P. A., Rodríguez-Jimenes, G. D. C., Robles-Olvera, V. J., Aparicio Burgos, J. E., & Cuervo-Parra, J. A. (2019). Antifungal activity of vanilla juice and vanillin against Alternaria alternata. CyTA-Journal of Food, 17(1), 375-383.
  8. Cuervo-Parra, J. A., Pérez-España, V. H., Pérez, P. A. L., Morales-Ovando, M. A., Arce-Cervantes, O., Aparicio-Burgos, J. E., & Romero-Cortes, T. (2019). Scyphophorus acupunctatus (Coleoptera: Dryophthoridae): a weevil threatening the production of agave in Mexico. Florida Entomologist, 102(1), 1-9.
  9. López-Labra, H. A., Santos-Sánchez, O. J., Rodríguez-Guerrero, L., Ordaz-Oliver, J. P., & Cuvas-Castillo, C. (2019). Experimental Results of Optimal and Robust Control for Uncertain Linear Time-Delay Systems. Journal of Optimization Theory and Applications, 181(3), 1076-1089.
  10. Ordaz, P., Ordaz, M., Cuvas, C., & Santos, O. (2019). Reduction of matched and unmatched uncertainties for a class of nonlinear perturbed systems via robust control. International Journal of Robust and Nonlinear Control, 29(8), 2510-2524.
  11. Sánchez, B., Cuvas, C ., Ordaz, P., Santos-Sánchez, O. J., & Poznyak, A. (2019). Full-Order Observer for a Class of Nonlinear Systems With Unmatched Uncertainties: Joint Attractive Ellipsoid and Sliding Mode Concepts. IEEE Transactions on Industrial Electronics.
  12. García, O., Ordaz, P ., Santos-Sánchez, O. J., Salazar, S., & Lozano, R. (2019). Backstepping and Robust Control for a Quadrotor in Outdoors Environments: An Experimental Approach. IEEE Access, 7, 40636-40648.
  13. Sandre-Hernández, O., de Jesús Rangel-Magdaleno, J., & Moporal, R. (2019). Modified model predictive torque control for a PMSM-drive with torque ripple minimisation. IET Power Electronics, 12(5), 1033-1042.
  14. Castillo, F., Lopez, R., Santos-Sanchez, O .J. (2019), Osorio, A., Salazar, S. & Lozano, R. Finite horizon nonlinear energy optimizing control in a force augmenting hybrid exoskeleton for the elbow joint. IEEE Transactions on Control Systems Technology.
  15. Ochoa-Ortega, G., Villafuerte-Segura, R ., Ramírez-Neria, M., & Vite-Hernández, L. (2019). σ-Stabilization of a Flexible Joint Robotic Arm via Delayed Controllers. Complexity, 2019.

 

2018

  1. Itzá-Ortiz, B. A., López-Hernández, R., & Miramontes, P. (2018). Digital images unveil geometric structures in pairs of relatively prime numbers. The Mathematical Intelligencer, 1-6.
  2. Juárez, L., Mondié, S., & Cuvas, C. (2018). Connected cruise control of a car platoon: A time-domain stability analysis. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 232(6), 672-682.
  3. Rosales-Lagarde, A., Rodríguez-Torres, E. E., Itzá-Ortiz, B., Miramontes, P., Vázquez-Tagle, G., Enciso-Alva, J., . & López-Noguerola, J. S. (2018). The Color of Noise and Weak Stationarity at the NREM to REM sleep transition in Mild Cognitive Impaired subjects. Frontiers in psychology, 9, 1205.
  4. Martínez-Alcalá, C. I., Rosales-Lagarde, A., Hernández-Alonso, E., Melchor-Agustín, R., Rodríguez-Torres, E. E., & Itzá-Ortiz, B. A. (2018). A Mobile App (iBeni) With a Neuropsychological Basis for Cognitive Stimulation for Elderly Adults: Pilot and Validation Study. JMIR research protocols, 7(8), e172.
  5. Ortega-Martínez, J. M., Santos-Sánchez, O. J., Rodríguez-Guerrero, L., Trejo, H. R., & Ordaz-Oliver, J. P. (2018). ADAPTIVE NONLINEAR OPTIMAL CONTROL FOR A BANANA DEHYDRATION PROCESS, International Journal of Innovative Computing, Information and Control, 14(6), 2055-2070.
  6. Villafuerte-Segura, R. (2018). Controller with time-delay to stabilize first-order processes with dead-time. Journal of Control Engineering and Applied Informatics, 20(2), 42-50.
  7. Aguirre-Hernández, B., García-Sosa, F. R., Loredo-Villalobos, C. A., Villafuerte-Segura, R., & Campos-Cantón, E. (2018). Open problems related to the Hurwitz stability of polynomial segments. Mathematical Problems in Engineering, 2018.
  8. Cortes, T. R., Cuervo-Parra, J. A., Robles-Olvera, V. J., Cortes, E. R., & Pérez, P. A. L. (2018). Experimental and Kinetic Production of Ethanol Using Mucilage Juice Residues from Cocoa Processing. International Journal of Chemical Reactor Engineering, 16(11).
  9. López-Pérez, P. A., Cuervo-Parra, J. A., Robles-Olvera, V. J., Jimenes, G. D. C. R., España, V. H. P., & Romero-Cortes, T. (2018). Development of a Novel Kinetic Model for Cocoa Fermentation Applying the Evolutionary Optimization Approach. International journal of food engineering, 14(5-6).
  10. Grijalva-Hernández, F., Caballero, V. P., López-Pérez, P. A., & Aguilar-López, R. (2018). Estimation of plasmid concentration in batch culture of Escherichia coliDH5α via simple state observer. Chemical Papers, 72(10), 2589-2598.
  11. Hernández-Melchor, D. J., López-Pérez, P. A., Carrillo-Vargas, S., Alberto-Murrieta, A., González-Gómez, E., & Camacho-Pérez, B. (2018). Experimental and kinetic study for lead removal via photosynthetic consortia using genetic algorithms to parameter estimation. Environmental Science and Pollution Research, 25(22), 21286-21295.
  12. Villafuerte-Segura, R., Medina-Dorantes, F., Vite-Hernández, L., & Aguirre-Hernández, B. (2018). Tuning of a time-delayed controller for a general class of second-order linear time invariant systems with dead-time. IET Control Theory & Applications, 13(3), 451-457.
  13. Sanchez, B., Ordaz, P ., & Santos, O. (2018). Swing-Stabilization Up for a Rotatory-Elastic Pendulum Via Nonlinear Sub-Optimal Control. Asian Journal of Control.
  14. Sandre-Hernández, O., Rangel-Magdaleno, J., Morales-Caporal, R., & Bonilla-Huerta, E. (2018). HIL simulation of the DTC for a three-level inverter fed a PMSM with neutral-point balancing control based on FPGA. Electrical Engineering, 100(3), 1441-1454.

2017

  1. Egorov, A. V., Cuvas, C ., & Mondié, S. (2017). Necessary and sufficient stability conditions for linear systems with pointwise and distributed delays. Automatica, 80, 218-224.
  2. Hernández-Becerra, C., & Itzá-Ortiz, B . A. (2016). A class of tridiagonal operators associated to some subshifts. Open Mathematics, 14(1), 352-360.
  3. Rodríguez-Guerrero, L., Santos-Sánchez, O. J., Cervantes-Escorcia, N., & Romero, H. (2017). Real-time discrete suboptimal control for systems with input and state delays: experimental tests on a dehydration process. ISA transactions, 71, 448-457.
  4. López, R. A., Camacho, B. R., Neria-González, M. I., Rangel, E., Santos, O., & Pérez, P. A. L. (2017). State estimation based on nonlinear observer for hydrogen production in a photocatalytic anaerobic bioreactor. International Journal of Chemical Reactor Engineering, 15(5).
  5. Hernández-Melchor, D. J., Cañizares-Villanueva, R. O., Terán-Toledo, J. R., López-Pérez, P. A., & Cristiani-Urbina, E. (2017). Hydrodynamic and mass transfer characterization of flat-panel airlift photobioreactors for the cultivation of a photosynthetic microbial consortium. Biochemical Engineering Journal, 128, 141-148.
  6. Miralrio, A., Hernández-Hernández, A., Pescador-Rojas, J. A., Sansores, E., López-Pérez, P . A., Martínez-Farías, F., & Rangel Cortes, E. (2017). Theoretical study of the stability and properties of magic numbers (m= 5, n= 2) and (m= 6, n= 3) of bimetallic bismuth-copper nanoclusters; Bim Cun. International Journal of Quantum Chemistry, 117(24), e25449.
  7. Orea, M. D. D. D., Romero-Cortes, T., López-Pérez, P. A., Espana, V. H. P., Ramírez-Lepe, M., & Cuervo-Parra, J. A. (2017). Current Status of Cocoa Frosty Pod Rot Caused by Moniliophthora roreri and a Phylogenetic Analysis. Plant Pathology Journal, 16(1), 41-53.
  8. Ordaz, P., Santos-Sánchez, O. J., Rodríguez-Guerrero, L., & González-Facundo, A. (2017). Nonlinear stabilization for a class of time delay systems via inverse optimality approach. ISA transactions, 67, 1-8.
  9. Cervantes, J., Yu, W., & Salazar, S. (2017). On-line TS fuzzy control using Riccati differential equation. Journal of Intelligent & Fuzzy Systems, 33(6), 3871-3881.
  10. Sandre-Hernandez, O., Rangel-Magdaleno, J., & Morales-Caporal, R. (2017). A comparison on finite-set model predictive torque control schemes for pmsms. IEEE Transactions on Power Electronics, 33(10), 8838-8847.
  11. Ordaz, P. (2017). Nonlinear robust output stabilization for mechanical systems based on luenberger-like controller/observer. Journal of Dynamic Systems, Measurement, and Control, 139(8), 084501.
  12. Ortega-Montiel, T., Villafuerte-Segura, R., Vázquez-Aguilera, C., & Freidovich, L. (2017). Proportional retarded controller to stabilize underactuated systems with measurement delays: Furuta pendulum case study. Mathematical Problems in Engineering, 2017.
  13. Ordaz, P., & Ordaz, M. (2017). Ultimate uniform bounded-stability of inertial coupling electromechanical system via nonlinear time-varying feedback. International Journal of Control, 90(4), 715-728.

 

2016

  1. Itzá-Ortiz, B. A., Malachi, M. B., Marstaller, A., Saied, J., & Underwood, S. (2016). Classification of eventually periodic subshifts. Indagationes Mathematicae, 27(3), 868-878.
  2. Rodríguez-Guerrero, L., Kharitonov, V. L., & Mondié, S. (2016). Robust stability of dynamic predictor based control laws for input and state delay systems. Systems & Control Letters, 96, 95-102.
  3. Rodríguez-Guerrero, L., Santos-Sánchez, O., & Mondié, S. (2016). A constructive approach for an optimal control applied to a class of nonlinear time delay systems. Journal of Process Control, 40, 35-49.
  4. Santos-Sánchez, N. F., Salas-Coronado, R., Santos-Sánchez, O. J., Romero, H., & Garrido-Aranda, E. (2016). On the effects of the temperature control at the performance of a dehydration process: energy optimization and nutrients retention. The International Journal of Advanced Manufacturing Technology, 86(9-12), 3157-3171.
  5. Rangel, E., Sansores, E., Vallejo, E., Hernández-Hernández, A., & López-Pérez, P. A. (2016). Study of the interplay between N-graphene defects and small Pd clusters for enhanced hydrogen storage via a spill-over mechanism. Physical Chemistry Chemical Physics, 18(48), 33158-33170.
  6. Aguilar-López, R., López-Pérez, P. A ., Lara-Cisneros, G., & Femat, R. (2016). Controlling a class of chaotic quantum system under disturbances and noisy measurements: Application to 1D Bose-Einstein condensate. International Journal of Modern Physics C, 27(04), 1650040.
  7. López-Pérez, P. A., Puebla, H., Sánchez, H. V., & Aguilar-López, R. (2016). Comparison tools for parametric identification of kinetic model for ethanol production using evolutionary optimization approach. International Journal of Chemical Reactor Engineering, 14(6), 1201-1209.
  8. Perez, P. L., González, M. N., García, M. P., & López, R. A. (2016). Concentrations monitoring via software sensor for bioreactors under model parametric uncertainty: Application to cadmium removal in an anaerobic process. Alexandria Engineering Journal, 55(2), 1893-1902.
  9. Peña-Caballero, V., Aguilar-López, R., López-Pérez, P . A., & Neria-González, M. I. (2016). Reduction of Cr (VI) utilizing biogenic sulfide: an experimental and mathematical modeling approach. Desalination and Water Treatment, 57(28), 13056-13065.
  10. López-Pérez, P. A., Neria-González, M. I., & Aguilar-López, R. (2016). Improvement of activated sludge process using a nonlinear PI controller design via adaptive gain. International Journal of Chemical Reactor Engineering, 14(1), 407-416.
  11. Cervantes, J., Yu, W., Salazar, S., & Chairez, I. (2016). Takagi-Sugeno dynamic neuro-fuzzy controller of uncertain nonlinear systems. IEEE Transactions on Fuzzy Systems, 25(6), 1601-1615.
  12. Ramos-Velasco, L. E., Domínguez-Ramírez, O. A., & Parra-Vega, V. (2016). Wavenet fuzzy PID controller for nonlinear MIMO systems: Experimental validation on a high-end haptic robotic interface. Applied Soft Computing, 40, 199-205.
  13. Segura, R. V., Ramírez, O. A. D., Hernández, O. G., & León, M. A. H. (2016). A Simple Implementation of an Intelligent Adaptive Control Systems for Human-Robot Interaction. IEEE Latin America Transactions, 14(1), 20-31.
  14. Ordaz, P., & Poznyak, A. (2016). Adaptive-Robust Stabilization of the Furuta's Pendulum Via Attractive Ellipsoid Method. Journal of Dynamic Systems, Measurement, and Control, 138(2), 021005.
  15. Santos, O., Romero, H., Salazar, S., García-Pérez, O., & Lozano, R. (2016). Optimized discrete control law for quadrotor stabilization: Experimental results. Journal of Intelligent & Robotic Systems, 84(1-4), 67-81.

 

2015

  1. Cuvas, C., & Mondié, S. (2015). Necessary stability conditions for delay systems with multiple pointwise and distributed delays. IEEE Transactions on Automatic Control, 61(7), 1987-1994.
  2. Ortiz, B. A. I. (2015). Classification of Generalized Denjoy Continua. HOUSTON JOURNAL OF MATHEMATICS, 41(4), 1295-1311.
  3. Ordaz, P., & Poznyak, A. (2015). 'KL'-gain adaptation for attractive ellipsoid method. IMA Journal of Mathematical Control and Information, 32(3), 447-469.
  4. Castillo, J. P., Mafiolis, C. D., Escobar, E. C., Barrientos, A. G., & Segura, R. V. (2015). Design, construction and implementation of a low cost solar-wind hybrid energy system. IEEE Latin America Transactions, 13(10), 3304-3309.
  5. Ramírez, M., Villafuerte, R., González, T., & Bernal, M. (2015). Exponential estimates of a class of time-delay nonlinear systems with convex representations. International Journal of Applied Mathematics and Computer Science, 25(4), 815-826.
  6. Villafuerte, R., & Melo, J. O. (2015). Design and tuning of a delayed proportional fuzzy proportional control law: frequency approach. Revista Iberoamericana de Automática e Informática industrial, 12(4), 467-475.
  7. Ruiz-Camacho, B., Álvarez, O. M., Rodríguez-Santoyo, H. H., López-Pérez, P. A., & Fuentes-Ramírez, R. (2015). Mono and bi-metallic electrocatalysts of Pt and Ag for oxygen reduction reaction synthesized by sonication. Electrochemistry Communications, 61, 5-9.
  8. Pérez, P. A. L., Neria-González, M. I., & López, R. A. (2015). Increasing the bio-hydrogen production in a continuous bioreactor via nonlinear feedback controller. international journal of hydrogen energy, 40(48), 17224-17230.
  9. Cuevas Ortiz, F. A., López-Pérez, P . A., Femat, R., Lara-Cisneros, G., & Aguilar-López, R. (2015). Regulation of a Class of Continuous Bioreactor under Switching Kinetic Behavior: Modeling and Simulation Approach. Industrial & Engineering Chemistry Research, 54(4), 1326-1332.
  10. Santos, O., Villafuerte, R., & Mondié, S. (2014). Robust stabilization of nonlinear time delay systems: A complete type functionals approach. Journal of the Franklin Institute, 351(1), 207-224.
  11. López-Pérez, P. A., Cuevas-Ortiz, F. A., Gómez-Acata, R. V., & Aguilar-López, R. (2015). Improving bioethanol production via nonlinear controller with noisy measurements. Chemical Engineering Communications, 202(11), 1438-1445.
  12. Pérez, P. L., López, R. A., & González, M. N. (2015). Cadmium removal at high concentration in aqueous medium: mediated by Desulfovibrio alaskensis. International Journal of Environmental Science and Technology, 12(6), 1975-1986.
  13. Oliver, O., Patricio, J., Quesada, E., Steed, E., García Barrientos, A., & Ramos Fernández, J. C. (2015). PID based on attractive ellipsoid method for dynamic uncertain and external disturbances rejection in mechanical systems. Mathematical Problems in Engineering, 2015.
  14. Rivera, L. A. M., Ortega, O. L., & Ramírez, O . A. D. (2015). Stability analysis of Mamdani-type fuzzy controllers by calculating the Lyapunov exponent. Revista Iberoamericana de Automática e Informática industrial, 12(4), 446-456.
  15. Sandre-Hernández, O., Morales-Caporal, R., Rangel-Magdaleno, J., Peregrina-Barreto, H., & Hernández-Pérez, J. N. (2015). Parameter identification of PMSMs using experimental measurements and a PSO algorithm. IEEE Transactions on Instrumentation and Measurement, 64(8), 2146-2154.

 

2014

  1. Mino-Aguilar, G., Muñoz-Hernández, G. A., Guerrero-Castellanos, J. F., Molina-Flores, E., Díaz-Sánchez, A., Domínguez-Ramírez, O. A., & Graciós-Marin, C. A. (2014). Alternative soft fault model of the cross-coupling effect correlated at hydroelectric power energy system. International Journal of Electrical Power & Energy Systems, 58, 274-280.
  2. Espinoza, E. S., García, O., Lugo, I., Ordaz, P., Malo, A., & Lozano, R. (2014). Modeling and sliding mode control of a micro helicopter-airplane system. Journal of Intelligent & Robotic Systems, 73(1-4), 469-486.
  3. Ordaz, P., Espinoza, E. S., & Muñoz, F. (2014). Research on swing up control based on energy for the pendubot system. Journal of Dynamic Systems, Measurement, and Control, 136(4), 041018.
  4. Castillo, P., Muñoz, L. E., & Santos, O. (2014). Robust control algorithm for a rotorcraft disturbed by crosswind. IEEE Transactions on Aerospace and Electronic Systems, 50(1), 756-763.

 

Since its creation, the Master's Program has recognized the importance of strengthening ties with various national and international academic institutions in related areas of knowledge. For this reason, we will continue to promote the linkage of the PEP in different Higher Education Institutions through conferences, congresses, workshops and other scientific and academic activities. In addition, student and faculty mobility is considered as a strategy to strengthen the academic and scientific linkage with the national and international educational sector.

National collaborations

  • Mixed International Unit - CINVESTAV, Mexico City
  • Automatic Control Department - CINVESTAV, Mexico City, Mexico
  • Biotechnology- CINVESTAV, Mexico City
  • Universidad Tecnológica de la Mixteca, Oaxaca
  • Polytechnic University of Pachuca, Hidalgo
  • Autonomous University of Ciudad del Carmen, Campeche
  • CINVESTAV-Saltillo, Coahuila
  • Autonomous University of Sinaloa
  • Sonora Institute of Technology
  • Universidad Autónoma Metropolitana Unidad Iztapalapa, Mexico City
  • Interdisciplinary Professional Unit of Engineering and Social and Administrative Sciences - IPN, Mexico City
  • University of Papaloapan, Oaxaca
  • Potosi Institute of Scientific and Technological Research - San Luis Potosi

International collaborations

  • Université de Technologie Compiègne, France
  • Polytechnic University of Catalonia, Spain
  • Ohio Institute of Technology, USA
  • Umeå University, Sweden
  • University of Valladolid, Spain
  • Saint Petersburg State University, Russia
  • California State University, USA
  • Banff International Research Station, Canada
  • University of Malaga, Spain
Avatar
Dr. Liliam Rodríguez Guerrero

Dr. Liliam Rodríguez Guerrero
liliam_rodriguez@uaeh.edu.mx
SNI I
PRODEP: Current
LGAC: Nonlinear systems

Avatar
Dr. Jesús Patricio Ordaz Oliver

Dr. Jesús Patricio Ordaz Oliver
jesus_ordaz@uaeh.edu.mx

SNI I
PRODEP: Current
LGAC: Robot control

Avatar
Dr. Omar Jacobo Santos Sánchez

Dr. Omar Jacobo Santos Sánchez
omarj@uaeh.edu.mx
SNI I
PRODEP: Current
LGAC: Nonlinear systems

Avatar
Dr. Hugo Romero Trejo

Dr. Hugo Romero Trejo
rhugo@uaeh.edu.mx
SNI I
PRODEP: Current
LGAC: Robot control


Avatar
Dr. Carlos Cuvas Castillo

Dr. Carlos Cuvas Castillo
carlos_cuvas@uaeh.edu.mx
SNI I
PRODEP: Current
LGAC: Nonlinear systems

Avatar
Dr. Raúl Villafuerte Segura

Dr. Raúl Villafuerte Segura
villafuerte@uaeh.edu.mx
SNI I
PRODEP: Current
LGAC: Nonlinear systems

Avatar
Dr. Benjamín Alfonso Itzá Ortiz

Dr. Benjamín Alfonso Itzá Ortiz
itza@uaeh.edu.mx
SNI I
PRODEP: Current
LGAC: Nonlinear systems

Avatar
Dr. Omar Arturo Domínguez Ramírez

Dr. Omar Arturo Dominguez Ramirez
omar@uaeh.edu.mx
PRODEP: Current
LGAC: Robot control


Avatar
Dr. Omar Sandre Hernández

Dr. Omar Sandre Hernández
omar_sandre@uaeh.edu.mx
SNI C
LGAC: Nonlinear Systems

Avatar
Dr. Jorge Said Cervantes Rojas

Dr. Jorge Said Cervantes Rojas
jorge_cervantes@uaeh.edu.mx
SNI C
LGAC: Robot control

Avatar
Dr. Pablo Antonio López Pérez

Dr. Pablo Antonio López Pérez
pablo_lopez@uaeh.edu.mx
SNI I
PRODEP: Current
LGAC: Nonlinear systems

Avatar
Dr. Felix Agustin Castro Espinoza

Dr. Felix Agustin Castro Espinoza
fcastro@uaeh.edu.mx
SNI I
PRODEP: Current
LGAC: Nonlinear systems










Share in: